THE POLYNOMIALS ASSOCIATED WITH A JULIA SET

被引:0
|
作者
SCHMIDT, W
STEINMETZ, N
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that, with two exceptions, the set of polynomials with Julia set J has the form {sigma p(n): n is an element of N, sigma is an element of Sigma} where p is one of these polynomials and Sigma is the symmetry group of J. The exceptions occur when J is a circle or a straight line segment.
引用
收藏
页码:239 / 241
页数:3
相关论文
共 50 条
  • [1] Commuting polynomials and polynomials with same Julia set
    Atela, P
    Hu, J
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (12A): : 2427 - 2432
  • [2] Local connectivity of the Julia set of real polynomials
    Levin, G
    Van Strien, S
    ANNALS OF MATHEMATICS, 1998, 147 (03) : 471 - 541
  • [3] On a certain kind of polynomials of degree 4 with disconnected Julia set
    Katagata, Koh
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2008, 20 (04) : 975 - 987
  • [4] Connectivity of the Julia set for the Chebyshev-Halley family on degree n polynomials
    Campos, B.
    Canela, J.
    Vindel, P.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 82
  • [5] Infinitely renormalizable quadratic polynomials, with non-locally connected Julia set
    Sørensen D.E.K.
    The Journal of Geometric Analysis, 2000, 10 (1): : 169 - 206
  • [6] Convergence of Julia polynomials
    Pritsker, IE
    JOURNAL D ANALYSE MATHEMATIQUE, 2004, 94 (1): : 343 - 361
  • [7] Convergence of Julia polynomials
    Igor E. Pritsker
    Journal d’Analyse Mathematique, 2004, 94 : 343 - 361
  • [8] ALMOST PERIODIC JACOBI MATRICES ASSOCIATED WITH JULIA SETS FOR POLYNOMIALS
    BARNSLEY, MF
    GERONIMO, JS
    HARRINGTON, AN
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 99 (03) : 303 - 317
  • [9] Julia sets of expanding polynomials
    Blokh, A
    Cleveland, C
    Misiurewicz, M
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 : 1691 - 1718
  • [10] Julia Sets of Orthogonal Polynomials
    Jacob Stordal Christiansen
    Christian Henriksen
    Henrik Laurberg Pedersen
    Carsten Lunde Petersen
    Potential Analysis, 2019, 50 : 401 - 413