QUANTUM INTERFERENCE EFFECTS AND SPIN-ORBIT INTERACTION IN QUASI-ONE-DIMENSIONAL WIRES AND RINGS

被引:79
|
作者
KURDAK, C [1 ]
CHANG, AM [1 ]
CHIN, A [1 ]
CHANG, TY [1 ]
机构
[1] AT&T BELL LABS,HOLMDEL,NJ 07733
来源
PHYSICAL REVIEW B | 1992年 / 46卷 / 11期
关键词
D O I
10.1103/PhysRevB.46.6846
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study two kinds of quantum interference effects in transport-the Aharonov-Bohm effect and the weak-localization effect-in quasi-one-dimensional wires and rings to address issues concerning the phase-coherence length, spin-orbit scattering, and the flux cancellation mechanism which is predicted to be present when the elastic mean free path exceeds the sample width. Our devices are fabricated on GaAs/AlxGa1-xAs and pseudomorphic GaxIn1-xAs/AlxIn1-xAs heterostructure materials and the experiments carried out at 0.4-20 K temperatures. In the GaAs/AlxGa1-xAs devices which exhibit no significant spin-orbit scattering, we were able to extract a phase-coherence length l-phi from the amplitude of the Aharonov-Bohm magnetoresistance oscillations in different sized rings. We find it to be in agreement with l-phi deduced from the weak-localization data in parallel wires when the one-dimensional weak-localization theory including the flux cancellation mechanism is used to fit the data. We therefore unambiguously establish that the same l-phi governs the behavior of the two quantum interference phenomena of Aharonov-Bohm oscillations and weak localization, and that the flux cancellation is in force. In the pseudomorphic GaxIn1-xAs/AlxIn1-xAs heterostructure devices which exhibit strong spin-orbit interaction effects, l-phi exceeds the spin-orbit-scattering length at low temperatures. The amplitude of Aharonov-Bohm oscillations can only be explained by introducing reduction factors due to spin-orbit scattering.
引用
收藏
页码:6846 / 6856
页数:11
相关论文
共 50 条
  • [21] Rashba spin-orbit interaction in a superlattice of quantum wires
    Thorgilsson, Gunnar
    Egues, J. Carlos
    Loss, Daniel
    Erlingsson, Sigurdur I.
    [J]. PHYSICAL REVIEW B, 2012, 85 (04)
  • [22] Charge transport by modulating spin-orbit gauge fields for quasi-one-dimensional holes
    Kernreiter, T.
    Governale, M.
    Hamilton, A. R.
    Zuelicke, U.
    [J]. APPLIED PHYSICS LETTERS, 2011, 98 (15)
  • [23] Quantum effects in spin dynamics of quasi-one-dimensional antiferromagnets
    Zaliznyak, IA
    Regnault, LP
    Petitgrand, D
    [J]. CZECHOSLOVAK JOURNAL OF PHYSICS, 1996, 46 : 3232 - 3238
  • [24] MAGNETOPHONON RESONANCES IN QUASI-ONE-DIMENSIONAL QUANTUM WIRES
    RYU, JY
    OCONNELL, RF
    [J]. PHYSICAL REVIEW B, 1993, 48 (12): : 9126 - 9129
  • [25] Compressibility Measurements of Quasi-One-Dimensional Quantum Wires
    Smith, L. W.
    Hamilton, A. R.
    Thomas, K. J.
    Pepper, M.
    Farrer, I.
    Griffiths, J. P.
    Jones, G. A. C.
    Ritchie, D. A.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (12)
  • [26] PERIODIC QUANTUM WIRES AND THEIR QUASI-ONE-DIMENSIONAL NATURE
    WU, H
    SPRUNG, DWL
    MARTORELL, J
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1993, 26 (05) : 798 - 803
  • [27] Topological minigap in quasi-one-dimensional spin-orbit-coupled semiconductor Majorana wires
    Tewari, Sumanta
    Stanescu, T. D.
    Sau, Jay D.
    Das Sarma, S.
    [J]. PHYSICAL REVIEW B, 2012, 86 (02):
  • [28] Spin densities in parabolic quantum wires with Rashba spin-orbit interaction
    Erlingsson, Sigurdur I.
    Egues, J. Carlos
    Loss, Daniel
    [J]. PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 3, NO 12, 2006, 3 (12): : 4317 - 4321
  • [29] Spin-orbit interaction effects on the electronic structure of coaxial quantum well wires
    Ghafari, A.
    Vaseghi, B.
    Rezaei, G.
    Taghizadeh, S. F.
    Karimi, M. J.
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 2017, 101 : 397 - 404
  • [30] Modulation of spin distribution and spin transport by a magnetic field in a quasi-one-dimensional system with spin-orbit coupling
    Ling Dong-Bo
    Xia Ke
    Li Ding-Ping
    Ma Zhong-Shui
    [J]. CHINESE PHYSICS LETTERS, 2006, 23 (06) : 1562 - 1565