SINTERING MECHANISMS OF BORON ALLOYED AISI 316L STAINLESS-STEEL

被引:50
|
作者
MOLINARI, A
KAZIOR, J
MARCHETTI, F
CANTERI, R
CRISTOFOLINI, I
TIZIANI, A
机构
[1] KRAKOW TECH UNIV,PL-31155 KRAKOW,POLAND
[2] IRST,DIV MAT SCI,TRENT,ITALY
[3] UNIV PADUA,DIMEG,I-35100 PADUA,ITALY
关键词
D O I
10.1179/pom.1994.37.2.115
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The effect of boron on sintering of austenitic stainless steel was studied with reference to atmosphere (nitrogen-hydrogen mixtures) and temperature conditions. Specimens were characterised by the usual microstructural techniques and the boron distribution in the microstructure was also studied by means of Auger electron spectroscopy and secondary ion mass spectroscopy. In addition, tensile tests were carried out to verify the influence of the process parameters on the mechanical properties of the materials. Boron strongly enhances sintering by liquid phase formation only when the process is carried out in pure hydrogen at a temperature higher than 1200-degrees-C. In those conditions a eutectic reaction between austenite and a complex boride of the type (Fe,Cr,Mo)2B occurs favouring densification through the well known mechanisms of liquid phase sintering. A very low fraction of residual porosity is obtained. Conversely, the presence of nitrogen in the sintering atmosphere impedes boron-steel interaction and sintering is inhibited. The liquid phase sintered specimens exhibit a dense microstructure which should provide good corrosion resistance.
引用
下载
收藏
页码:115 / 122
页数:8
相关论文
共 50 条
  • [31] Study of Diffusion Bonding Parameters of AISI 316L Stainless Steel
    Volponi Mortean, Marcus Vinicius
    Mateus, Luisa Bastos
    Rosinski, Gregori
    Mantelli, Marcia Barbosa Henriques
    SOLDAGEM & INSPECAO, 2019, 24
  • [32] MATERIAL FAILURE OF AN AISI 316L STAINLESS STEEL HIP PROSTHESIS
    Godec, Matjaz
    MATERIALI IN TEHNOLOGIJE, 2011, 45 (02): : 85 - 90
  • [33] Study on laser welding of AISI 316L austenitic stainless steel
    Dontu, O.
    Ocana Moreno, J. L.
    Ciobanu, R.
    Branzei, M.
    Besnea, D.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2015, 17 (9-10): : 1444 - 1449
  • [34] Analysis of deformation induced martensite in AISI 316L stainless steel
    Jagarinec, Darko
    Kirbis, Peter
    Predan, Jozef
    Vuherer, Tomaz
    Gubeljak, Nenad
    MATERIALS TESTING, 2016, 58 (06) : 547 - 552
  • [35] Tribological behaviour of AISI 316L stainless steel for biomedical applications
    Fellah, M.
    Labaiz, M.
    Assala, O.
    Iost, A.
    Dekhil, Leila
    TRIBOLOGY-MATERIALS SURFACES & INTERFACES, 2013, 7 (03) : 135 - 149
  • [36] MECHANICAL PROPERTIES OF DUPLEX TREATED AISI 316L STAINLESS STEEL
    Joska, Zdenek
    Kadlec, Jaromir
    Hruby, Vojtech
    Svoboda, Emil
    METAL 2011: 20TH ANNIVERSARY INTERNATIONAL CONFERENCE ON METALLURGY AND MATERIALS, 2011, : 724 - 728
  • [37] Modelling of Stainless Steel AISI 316L in Finite Element Simulations
    Snstab, Johan Kolst
    Faksvåg, Kristian Ullern
    Jakobsen, Lars Omland
    Clausen, Arild Holm
    ce/papers, 2021, 4 (2-4) : 1589 - 1598
  • [38] Corrosion and wear behaviors of boronized AISI 316L stainless steel
    Kayali, Yusuf
    Buyuksagis, Aysel
    Yalcin, Yllmaz
    METALS AND MATERIALS INTERNATIONAL, 2013, 19 (05) : 1053 - 1061
  • [39] Microwave sintering of 316L stainless steel: Influence of sintering temperature and time
    Nagaraju, K. V. V.
    Kumaran, S.
    Rao, T. Srinivasa
    MATERIALS TODAY-PROCEEDINGS, 2020, 27 : 2066 - 2071
  • [40] Biomaterial Studies on AISI 316L Stainless Steel after Magnetoelectropolishing
    Hryniewicz, Tadeusz
    Rokosz, Krzysztof
    Filippi, Massimiliano
    MATERIALS, 2009, 2 (01) : 129 - 145