Operator spaces;
Completely bounded mappings;
Complete isomorphisms;
Completely equivalent operator space structures;
Minimal and maximal operator spaces;
D O I:
暂无
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
If X is a Banach space, then any linear isometry from X to B(H), for some Hilbert space H endows an operator space structure on X. Among these operator space structures admissible on X, two are of special importance, namely, the minimal operator space structure Min(X) and the maximal operator space structure Max(X). In this note, we present a characterization of these spaces up to complete isomorphism. We derive some conditions for a completely bounded linear bijection to become a complete isomorphism. Also, we introduce the notion of complete equivalence of operator space structures on a Banach space.
机构:
Soochow Univ, Dept Math, Suzhou 215006, Peoples R China
Shanxi Datong Univ, Dept Math, Datong 037009, Peoples R ChinaSoochow Univ, Dept Math, Suzhou 215006, Peoples R China
Huang, Lizhong
Chen, Lin
论文数: 0引用数: 0
h-index: 0
机构:
Soochow Univ, Dept Math, Suzhou 215006, Peoples R China
Anshun Univ, Dept Math & Phys, Anshun 561000, Peoples R ChinaSoochow Univ, Dept Math, Suzhou 215006, Peoples R China
Chen, Lin
Lu, Fangyan
论文数: 0引用数: 0
h-index: 0
机构:
Soochow Univ, Dept Math, Suzhou 215006, Peoples R ChinaSoochow Univ, Dept Math, Suzhou 215006, Peoples R China
机构:
Univ Calif Irvine, Dept Math, Irvine, CA USA
Univ Illinois UrbanaChampaign, Dept Math, Urbana, IL 61801 USAUniv Calif Irvine, Dept Math, Irvine, CA USA
Oikhberg, Timur
Rosendal, Christian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Math Stat & Comp Sci M C 249, Chicago, IL 60607 USAUniv Calif Irvine, Dept Math, Irvine, CA USA