On the Basis Number of the Semi-Strong Product of Bipartite Graphs with Cycles

被引:0
|
作者
Jaradat, M. M. M. [1 ]
Alzoubi, Maref Y. [1 ]
机构
[1] Yarmouk Univ, Dept Math, Irbid, Jordan
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2005年 / 45卷 / 01期
关键词
fold; basis number; cycle space;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A basis of the cycle space C(G) is d-fold if each edge occurs in at most d cycles of C(G). The basis number, b(G), of a graph G is defined to be the least integer d such that G has a d-fold basis for its cycle space. MacLane proved that a graph G is planar if and only if b(G) <= 2. Schmeichel showed that for n >= 5, b(K center dot P2) <= 1 + b(K). Ali proved that for n, m >= 5, b(K center dot Km) <= 3 + b(K) b(Km). In this paper, we give an upper bound for the basis number of the semi-strong product of a bipartite graph with a cycle.
引用
收藏
页码:45 / 53
页数:9
相关论文
共 50 条
  • [21] The Menger number of the strong product of graphs
    Abajo, E.
    Casablanca, R. M.
    Dianez, A.
    Garcia-Vazquez, P.
    [J]. DISCRETE MATHEMATICS, 2013, 313 (13) : 1490 - 1495
  • [22] THE BASIS NUMBER OF THE LEXICOGRAPHIC PRODUCT OF GRAPHS
    ALI, AA
    MAROUGI, GT
    [J]. ARS COMBINATORIA, 1993, 36 : 271 - 282
  • [23] On The Strong and the Semi-Strong Path Partition Conjecture
    Sridharan, Sriraman
    Vilamajo, Patrick
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (01): : 289 - 296
  • [24] CYCLES IN BIPARTITE GRAPHS
    JACKSON, B
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1981, 30 (03) : 332 - 342
  • [25] On The Strong and the Semi-Strong Path Partition Conjecture
    Sriraman Sridharan
    Patrick Vilamajó
    [J]. Indian Journal of Pure and Applied Mathematics, 2020, 51 : 289 - 296
  • [26] Semi-Strong Factors in Asset Returns*
    Connor, Gregory
    Korajczyk, Robert A.
    [J]. JOURNAL OF FINANCIAL ECONOMETRICS, 2024, 22 (01) : 70 - 93
  • [27] Italian Domination Number of Strong Product of Cycles
    Wei, Liyang
    Li, Feng
    [J]. IAENG International Journal of Applied Mathematics, 2024, 54 (04) : 791 - 796
  • [28] The independence number of the strong product of odd cycles
    Vesel, A
    Zerovnik, J
    [J]. DISCRETE MATHEMATICS, 1998, 182 (1-3) : 333 - 336
  • [29] THE DOMINATION NUMBER OF STRONG PRODUCT OF DIRECTED CYCLES
    Cai, Huiping
    Liu, Juan
    Qian, Lingzhi
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2014, 6 (02)
  • [30] Semi-Strong Colouring of Intersecting Hypergraphs
    Blais, Eric
    Weinstein, Amit
    Yoshida, Yuichi
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2014, 23 (01): : 1 - 7