On the Basis Number of the Semi-Strong Product of Bipartite Graphs with Cycles

被引:0
|
作者
Jaradat, M. M. M. [1 ]
Alzoubi, Maref Y. [1 ]
机构
[1] Yarmouk Univ, Dept Math, Irbid, Jordan
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2005年 / 45卷 / 01期
关键词
fold; basis number; cycle space;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A basis of the cycle space C(G) is d-fold if each edge occurs in at most d cycles of C(G). The basis number, b(G), of a graph G is defined to be the least integer d such that G has a d-fold basis for its cycle space. MacLane proved that a graph G is planar if and only if b(G) <= 2. Schmeichel showed that for n >= 5, b(K center dot P2) <= 1 + b(K). Ali proved that for n, m >= 5, b(K center dot Km) <= 3 + b(K) b(Km). In this paper, we give an upper bound for the basis number of the semi-strong product of a bipartite graph with a cycle.
引用
收藏
页码:45 / 53
页数:9
相关论文
共 50 条
  • [1] An upper bound of the basis number of the semi-strong product of cycles with bipartite graphs
    Jaradat, Mohammed M. M.
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 44 (03) : 385 - 394
  • [2] THE BASIS NUMBER OF THE STRONG PRODUCT OF PATHS AND CYCLES WITH BIPARTITE GRAPHS
    Jaradat, M. M. M.
    [J]. MISSOURI JOURNAL OF MATHEMATICAL SCIENCES, 2007, 19 (03) : 219 - 230
  • [3] On the Alon–Tarsi number of semi-strong product of graphs
    Lin Niu
    Xiangwen Li
    [J]. Journal of Combinatorial Optimization, 2024, 47
  • [4] On the Alon-Tarsi number of semi-strong product of graphs
    Niu, Lin
    Li, Xiangwen
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2024, 47 (01)
  • [5] SEMI-STRONG SPLIT DOMINATION IN GRAPHS
    Alwardi, A.
    Ebadi, K.
    Manrique, M.
    Soner, N.
    [J]. TRANSACTIONS ON COMBINATORICS, 2014, 3 (02) : 51 - 63
  • [6] SEMI-STRONG CHROMATIC NUMBER OF A GRAPH
    SAMPATHKUMAR, E
    LATHA, LP
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1995, 26 (01): : 35 - 40
  • [7] GOOD AND SEMI-STRONG COLORINGS OF ORIENTED PLANAR GRAPHS
    RASPAUD, A
    SOPENA, E
    [J]. INFORMATION PROCESSING LETTERS, 1994, 51 (04) : 171 - 174
  • [9] SEMI-STRONG CONTINUITY
    Roberson, Pamela D.
    Scheers, Jennifer M.
    [J]. TEXAS JOURNAL OF SCIENCE, 2012, 64 (1-4): : 89 - 100
  • [10] Semi-strong efficiency of Bitcoin
    Vidal-Tomas, David
    Ibanez, Ana
    [J]. FINANCE RESEARCH LETTERS, 2018, 27 : 259 - 265