Congruences of Multiple Sums Involving Sequences Invariant Under the Binomial Transform

被引:5
|
作者
Mattarei, Sandro [1 ]
Tauraso, Roberto [2 ]
机构
[1] Univ Trento, Dipartimento Matemat, Via Sommarive 14, I-38100 Trento, Italy
[2] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
关键词
binomial transform; multiple sum; congruence; Bernoulli polynomial;
D O I
10.5.1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove several congruences modulo a power of a prime, such as S-0 < k1 < center dot center dot center dot < kn < p (p - k(n)/3) (-1)(k)(n) / k(1) center dot center dot center dot k(n) equivalent to {-2(n+1) + 2 / 6(n+1) p Bp-n-1 (1/3) (mod p(2)), if n is odd, -2(n+1) + 4 / n6(n) Bp-n (1/3) (mod p), if n is even, where n is a positive integer and p is a prime such that p > max(n + 1, 3).
引用
收藏
页数:12
相关论文
共 50 条