PRE-TRAINED DEEP NEURAL NETWORK USING SPARSE AUTOENCODERS AND SCATTERING WAVELET TRANSFORM FOR MUSICAL GENRE RECOGNITION

被引:6
|
作者
Klec, Mariusz [1 ]
Korzinek, Danijel [1 ]
机构
[1] Polish Japanese Acad Informat Technol, Warsaw, Poland
来源
COMPUTER SCIENCE-AGH | 2015年 / 16卷 / 02期
关键词
Sparse Autoencoders; deep learning; genre recognition; Scattering Wavelet Transform;
D O I
10.7494/csci.2015.16.2.133
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Research described in this paper tries to combine the approach of Deep Neural Networks (DNN) with the novel audio features extracted using the Scattering Wavelet Transform (SWT) for classifying musical genres. The SWT uses a sequence of Wavelet Transforms to compute the modulation spectrum coefficients of multiple orders, which has already shown to be promising for this task. The DNN in this work uses pre-trained layers using Sparse Autoencoders (SAE). Data obtained from the Creative Commons website jamendo.com is used to boost the well-known GTZAN database, which is a standard bench-mark for this task. The final classifier is tested using a 10-fold cross validation to achieve results similar to other state-of-the-art approaches.
引用
收藏
页码:133 / 144
页数:12
相关论文
共 50 条
  • [21] Kurdish Sign Language Recognition Using Pre-Trained Deep Learning Models
    Alsaud, Ali A.
    Yousif, Raghad Z.
    Aziz, Marwan. M.
    Kareem, Shahab W.
    Maho, Amer J.
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (06) : 1334 - 1344
  • [22] Detection of Focal and Non-focal Epileptic Seizure Using Continuous Wavelet Transform-Based Scalogram Images and Pre-trained Deep Neural Networks
    Narin, A.
    IRBM, 2022, 43 (01) : 22 - 31
  • [23] Transfer Learning for Mammogram Classification Using Pre-Trained Convolutional Neural Network
    Yasuda, K.
    Tsuru, H.
    Ohki, M.
    MEDICAL PHYSICS, 2017, 44 (06) : 3102 - 3102
  • [24] SAR Image Despeckling Using Pre-trained Convolutional Neural Network Models
    Yang, Xiangli
    Denis, Loic
    Tupin, Florence
    Yang, Wen
    2019 JOINT URBAN REMOTE SENSING EVENT (JURSE), 2019,
  • [25] Automatic Modulation Recognition Using Wavelet Transform and Neural Network
    Hassan, K.
    Dayoub, I.
    Hamouda, W.
    Berbineau, M.
    ITST: 2009 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORT SYSTEMS TELECOMMUNICATIONS, 2009, : 234 - 238
  • [26] Olive Leaf Disease Detection via Wavelet Transform and Feature Fusion of Pre-Trained Deep Learning Models
    Mahmood, Mahmood A.
    Alsalem, Khalaf
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 78 (03): : 3431 - 3448
  • [27] Lithography Hotspot Detection Method Based on Transfer Learning Using Pre-Trained Deep Convolutional Neural Network
    Liao, Lufeng
    Li, Sikun
    Che, Yongqiang
    Shi, Weijie
    Wang, Xiangzhao
    APPLIED SCIENCES-BASEL, 2022, 12 (04):
  • [28] Action Recognition in Videos Using Global Descriptors and Pre-trained Deep Learning Architecture
    Zebhi, Saeedeh
    AlModarresi, S. M. T.
    Abootalebi, Vahid
    2020 28TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2020, : 1289 - 1292
  • [29] MICRO-EXPRESSION RECOGNITION BASED ON VIDEO MOTION MAGNIFICATION AND PRE-TRAINED NEURAL NETWORK
    Bai, Mengjiong
    Goecke, Roland
    Herath, Damith
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 549 - 553
  • [30] Deep Neural Network for Musical Instrument Recognition Using MFCCs
    Mahanta, Saranga Kingkor
    Khilji, Abdullah Faiz Ur Rahman
    Pakray, Partha
    COMPUTACION Y SISTEMAS, 2021, 25 (02): : 351 - 360