RELATIONSHIP BETWEEN QUEUE-LENGTH AND WAITING TIME DISTRIBUTIONS IN A PRIORITY QUEUE WITH BATCH ARRIVALS

被引:4
|
作者
TAKAHASHI, Y [1 ]
MIYAZAWA, M [1 ]
机构
[1] SCI UNIV TOKYO, FAC SCI & TECHNOL, DEPT INFORMAT SCI, NODA, CHIBA 278, JAPAN
关键词
D O I
10.15807/jorsj.37.48
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider a single-server priority queue with batch arrivals. We treat the head-of-the-line (HL) or preemptive-resume (PR) priority rule. Assuming that the arrival process of batches is renewal for each priority class and using the point process approach, we express the individual class queue-length distribution in terms of the waiting time and the completion time distributions. Assuming further a batch Poisson arrival for each class, together with the previous result on the Laplace-Stieltjes transforms for the waiting time and completion time distributions, we derive the z-transform for the queue-length distribution in closed form.
引用
收藏
页码:48 / 63
页数:16
相关论文
共 50 条
  • [31] On finite-buffer batch-size-dependent bulk service queue with queue-length dependent vacation
    Gupta, G. K.
    Banerjee, A.
    Gupta, U. C.
    QUALITY TECHNOLOGY AND QUANTITATIVE MANAGEMENT, 2020, 17 (05): : 501 - 527
  • [32] TIME-DEPENDENT ANALYSIS OF A QUEUE WITH BATCH ARRIVALS AND N-LEVELS OF NONPREEMPTIVE PRIORITY
    LANGARIS, C
    KATSAROS, A
    QUEUEING SYSTEMS, 1995, 19 (03) : 269 - 288
  • [33] Asymptotics of queue length distributions in priority retrial queues
    Walraevens, Joris
    Claeys, Dieter
    Tuan Phung-Duc
    PERFORMANCE EVALUATION, 2018, 127 : 235 - 252
  • [34] Computing queue length and waiting time distributions in finite-buffer discrete-time multiserver queues with late and early arrivals
    Gupta, UC
    Samanta, SK
    Sharma, RK
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (10-11) : 1557 - 1573
  • [35] Queue-length synchronization in communication networks
    Mukherjee, Satyam
    Gupte, Neelima
    PHYSICAL REVIEW E, 2009, 79 (05):
  • [36] Approximations for the waiting-time distribution in an priority queue
    Al Hanbali, A.
    Alvarez, E. M.
    van der Heijden, M. C.
    OR SPECTRUM, 2015, 37 (02) : 529 - 552
  • [37] An invariance relation and a unified method to derive stationary queue-length distributions
    Kim, NK
    Chae, KC
    Chaudhry, ML
    OPERATIONS RESEARCH, 2004, 52 (05) : 756 - 764
  • [38] Waiting time dynamics of priority-queue networks
    Min, Byungjoon
    Goh, K. -I.
    Kim, I. -M.
    PHYSICAL REVIEW E, 2009, 79 (05)
  • [39] Queue-length distribution of a batch service queue with random capacity and batch size dependent service: M/G(r)(Y)/1
    Pradhan, S.
    Gupta, U. C.
    Samanta, S. K.
    OPSEARCH, 2016, 53 (02) : 329 - 343
  • [40] Waiting time and queue length analysis of Markov-modulated fluid priority queues
    Gábor Horváth
    Queueing Systems, 2020, 95 : 69 - 95