STEADY POISEUILLE FLOWS FOR A GIESEKUS FLUID

被引:54
|
作者
SCHLEINIGER, G
WEINACHT, RJ
机构
[1] Department of Mathematical Sciences, University of Delaware, Newark
基金
美国国家科学基金会;
关键词
CONFIGURATION TENSOR; GIESEKUS FLUID; LINEAR STABILITY; POISEULLE FLOW; VISCOELASTIC FLOW;
D O I
10.1016/0377-0257(91)87027-U
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We determine weak and classical solutions for steady Poiseuille flows of a Giesekus fluid with zero and non-zero solvent viscosity. A one-dimensional stability analysis and considerations based upon the molecular description of the model help us to determine the physically meaningful solution among multiple solutions. These solutions should prove useful in investigating some interesting phenomena such as "spurt".
引用
收藏
页码:79 / 102
页数:24
相关论文
共 50 条
  • [11] The Giesekus fluid in ω–D form for steady two-dimensional flows Part II. Numerical simulation
    Edna Ryssel
    Peter O. Brunn
    Rheologica Acta, 1999, 38 : 423 - 436
  • [12] Poiseuille equation for steady flow of fractal fluid
    Tarasov, Vasily E.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2016, 30 (22):
  • [13] STEADY PLANE POISEUILLE FLOWS OF INCOMPRESSIBLE MULTIPOLAR FLUIDS
    BELLOUT, H
    BLOOM, F
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1993, 28 (05) : 503 - 518
  • [14] FILM CASTING OF A MODIFIED GIESEKUS FLUID - A STEADY-STATE ANALYSIS
    IYENGAR, VR
    CO, A
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1993, 48 (1-2) : 1 - 20
  • [15] Heat transfer in Couette-Poiseuille flow between parallel plates of the Giesekus viscoelastic fluid
    Mokarizadeh, Hadi
    Asgharian, Maedeh
    Raisi, Ahmadreza
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2013, 196 : 95 - 101
  • [16] SECONDARY FLOWS IN STRAIGHT NON-CIRCULAR TUBES - GIESEKUS FLUID
    Letelier, Mario F.
    Siginer, Dennis A.
    Stockle, Juan
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2013, VOL 7A, 2014,
  • [17] Vesicle dynamics in confined steady and harmonically modulated Poiseuille flows
    Boujja, Zakaria
    Misbah, Chaouqi
    Ez-Zahraouy, Hamid
    Benyoussef, Abdelilah
    John, Thomas
    Wagner, Christian
    Mueller, Martin Michael
    PHYSICAL REVIEW E, 2018, 98 (04)
  • [18] Inhomogeneous Gradient Poiseuille Flows of a Vertically Swirled Fluid
    Burmasheva, Natalya
    Ershkov, Sergey
    Prosviryakov, Evgeniy
    Leshchenko, Dmytro
    JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2024, 10 (01): : 1 - 12
  • [19] Exact Solution of the Couette-Poiseuille Type for Steady Concentration Flows
    Burmasheva, N. V.
    Prosviryakov, E. Yu.
    UCHENYE ZAPISKI KAZANSKOGO UNIVERSITETA-SERIYA FIZIKO-MATEMATICHESKIE NAUKI, 2022, 164 (04): : 285 - 301
  • [20] Couette–Poiseuille flow of the Giesekus model between parallel plates
    Irene Daprà
    Giambattista Scarpi
    Rheologica Acta, 2009, 48 : 117 - 120