A UNIFIED APPROACH TO PAINLEVE EXPANSIONS

被引:124
|
作者
NEWELL, AC [1 ]
TABOR, M [1 ]
ZENG, YB [1 ]
机构
[1] COLUMBIA UNIV,DEPT APPL PHYS,NEW YORK,NY 10027
来源
PHYSICA D | 1987年 / 29卷 / 1-2期
关键词
D O I
10.1016/0167-2789(87)90046-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:1 / 68
页数:68
相关论文
共 50 条
  • [21] On the instanton-type expansions for Painleve transcendents and elliptic functions
    Takei, Yoshitsugu
    COMPLEX DIFFERENTIAL AND DIFFERENCE EQUATIONS, 2019, : 365 - 377
  • [22] Large N expansions and Painleve hierarchies in the Hermitian matrix model
    Alvarez, Gabriel
    Martinez Alonso, Luis
    Medina, Elena
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (28)
  • [23] Painleve expansions and the Einstein equations: the two-summand case
    Dancer, A
    Wang, MY
    JOURNAL OF GEOMETRY AND PHYSICS, 2003, 48 (01) : 12 - 43
  • [24] Conformal invariant Painleve expansions and higher dimensional integrable models
    Lou, SY
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1999, 42 (05): : 537 - 545
  • [25] Toward a unified theory for repeat expansions
    Mirkin, SM
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2005, 12 (08) : 635 - 637
  • [26] Toward a unified theory for repeat expansions
    Sergei M Mirkin
    Nature Structural & Molecular Biology, 2005, 12 : 635 - 637
  • [27] Expansions of solutions to the sixth Painleve equation in the cases a=0 and b=0
    Bruno, A. D.
    Goryuchkina, I. V.
    DOKLADY MATHEMATICS, 2006, 74 (02) : 660 - 665
  • [28] A METHOD OF PROVING THE CONVERGENCE OF THE PAINLEVE EXPANSIONS OF PARTIAL-DIFFERENTIAL EQUATIONS
    JOSHI, N
    PETERSEN, JA
    NONLINEARITY, 1994, 7 (02) : 595 - 602
  • [29] Binary Trees, Left and Right Paths, WKB Expansions, and Painleve Transcendents
    Knessl, Charles
    Szpankowski, Wojciech
    PROCEEDINGS OF THE EIGHTH WORKSHOP ON ALGORITHM ENGINEERING AND EXPERIMENTS AND THE THIRD WORKSHOP ON ANALYTIC ALGORITHMICS AND COMBINATORICS, 2006, : 198 - +
  • [30] Unified signature cumulants and generalized Magnus expansions
    Friz, Peter K.
    Hager, Paul P.
    Tapia, Nikolas
    FORUM OF MATHEMATICS SIGMA, 2022, 10