EQUILIBRIUM BEHAVIOR OF A BROWNIAN PARTICLE IN A RANDOM ENVIRONMENT

被引:2
|
作者
STEPANOW, S
KRAFT, T
机构
[1] Technische Hochschule Merseburg, Fachbereich Physik
来源
PHYSICAL REVIEW A | 1991年 / 44卷 / 10期
关键词
D O I
10.1103/PhysRevA.44.6929
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Behavior of a Brownian particle confined in a harmonic potential that is disturbed by a random environment is considered. The effect of the environment on the mean-square displacement, the relaxation time, and the equilibrium distribution function are studied within the renormalization-group method to the first order of epsilon = 2-d (where d is the space dimensionality).
引用
收藏
页码:6929 / 6931
页数:3
相关论文
共 50 条
  • [21] Behavior of a Brownian particle in a nonstationary medium.
    Popov, AV
    Hernandez, R
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 229 : U775 - U775
  • [22] Thermal equilibrium of a Brownian particle in a fluctuating fluid: a numerical study
    Liu, Yi
    Nie, Deming
    [J]. 4TH INTERNATIONAL CONFERENCE ON MECHANICS AND MECHATRONICS RESEARCH (ICMMR 2017), 2017, 224
  • [23] Transport and bistable kinetics of a Brownian particle in a nonequilibrium environment
    Chaudhuri, Jyotipratim Ray
    Banik, Suman Kumar
    Chattopadhyay, Sudip
    Chaudhury, Pinaki
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (11)
  • [24] Continuous state branching processes in random environment: The Brownian case
    Palau, S.
    Pardo, J. C.
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2017, 127 (03) : 957 - 994
  • [25] Central Limit Theorem for Branching Brownian Motions in Random Environment
    Shiozawa, Yuichi
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2009, 136 (01) : 145 - 163
  • [26] Central Limit Theorem for Branching Brownian Motions in Random Environment
    Yuichi Shiozawa
    [J]. Journal of Statistical Physics, 2009, 136 : 145 - 163
  • [27] PERIODIC BEHAVIOR IN A RANDOM ENVIRONMENT
    BROADBENT, HA
    [J]. JOURNAL OF EXPERIMENTAL PSYCHOLOGY-ANIMAL BEHAVIORAL PROCESSES, 1994, 20 (02): : 156 - 175
  • [28] Equilibrium of a Brownian particle in a damping induced inhomogeneous space: an alternative approach
    Biswas, Avik
    Bhattacharyay, A.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (01)
  • [29] Diffusion Coefficient of a Brownian Particle in Equilibrium and Nonequilibrium: Einstein Model and Beyond
    Spiechowicz, Jakub
    Marchenko, Ivan G.
    Haenggi, Peter
    Luczka, Jerzy
    [J]. ENTROPY, 2023, 25 (01)
  • [30] NON-NEWTONIAN BEHAVIOR OF BROWNIAN PARTICLE SUSPENSIONS
    MILLS, P
    SNABRE, P
    QUEMADA, D
    [J]. REVUE DE PHYSIQUE APPLIQUEE, 1981, 16 (09): : 523 - 527