ON THE RICCI CURVATURE TENSOR IN FINSLER GEOMETRY

被引:0
|
作者
Shen, Zhongmin [1 ]
机构
[1] Univ Purdue Univ, Dept Math Sci, Indianapolis, IN 46202 USA
来源
SYMMETRY-CULTURE AND SCIENCE | 2012年 / 23卷 / 02期
关键词
Finsler metric; Berwald connection; Ricci curvature tensor; scalar curvature; Einstein fields equation;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, I introduce the notions of Ricci curvature tensor and scalar curvature,using the Berwald connection to derive the Einstein fields equation.
引用
收藏
页码:125 / 131
页数:7
相关论文
共 50 条
  • [41] Volume Growth of Finsler Manifolds with Integral Ricci Curvature Bound
    Wu, Bing-Ye
    RESULTS IN MATHEMATICS, 2021, 76 (04)
  • [42] Spherically symmetric Finsler metrics with constant Ricci and flag curvature
    Sevim, Esra Sengelen
    Shen, Zhongmin
    Ulgen, Semail
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2015, 87 (3-4): : 463 - 472
  • [43] δ-HOMOGENEITY IN FINSLER GEOMETRY AND THE POSITIVE CURVATURE PROBLEM
    Xu, Ming
    Zhang, Lei
    OSAKA JOURNAL OF MATHEMATICS, 2018, 55 (01) : 177 - 194
  • [44] Variational theory of the Ricci curvature tensor dynamics
    Cremaschini, Claudio
    Kovar, Jiri
    Stuchlik, Zdenek
    Tessarotto, Massimo
    EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (11):
  • [45] Weyl, curvature, ricci, and metric tensor symmetries
    Bokhari, AH
    Ahmad, S
    Pervez, A
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1996, 35 (05) : 1013 - 1017
  • [46] Variational theory of the Ricci curvature tensor dynamics
    Claudio Cremaschini
    Jiří Kovář
    Zdeněk Stuchlík
    Massimo Tessarotto
    The European Physical Journal C, 2021, 81
  • [47] On the Curvature of Kahler Manifolds with Zero Ricci Tensor
    Kokarev, V. N.
    MATHEMATICAL NOTES, 2019, 105 (3-4) : 528 - 534
  • [48] DECOMPOSITION OF RECURRENT CURVATURE TENSOR FIELDS IN FINSLER SPACES
    SINHA, BB
    SINGH, SP
    BULLETIN OF THE CALCUTTA MATHEMATICAL SOCIETY, 1970, 62 (02): : 91 - &
  • [49] EINSTEIN TENSOR IN SCALAR CURVATURE FINSLER-SPACES
    ISHIKAWA, H
    ANNALEN DER PHYSIK, 1980, 37 (02) : 151 - 154
  • [50] A Comparison Theorem on the Ricci Curvature in Projective Geometry
    Xinyue Chen
    Zhongmin Shen
    Annals of Global Analysis and Geometry, 2003, 23 : 141 - 155