A NOTE ON POSITIVITY OF EINSTEIN BUNDLES

被引:2
|
作者
LUBKE, M [1 ]
机构
[1] LEIDEN UNIV,INST MATH,2300 RA LEIDEN,NETHERLANDS
来源
关键词
D O I
10.1016/0019-3577(91)90019-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we give a criterion for the positivity of the curvature tensor of a Hermitian Einstein metric in a holomorphic vector bundle. This is a differential geometric version of an algebraic ampleness criterion previously proved by M. Schneider and A. Tancredi.
引用
收藏
页码:311 / 318
页数:8
相关论文
共 50 条
  • [31] Strict and nonstrict positivity of direct image bundles
    Bo Berndtsson
    Mathematische Zeitschrift, 2011, 269 : 1201 - 1218
  • [32] Positivity of the second exterior power of the tangent bundles
    Watanabe, Kiwamu
    ADVANCES IN MATHEMATICS, 2021, 385
  • [33] POSITIVITY AND VANISHING THEOREMS FOR AMPLE VECTOR BUNDLES
    Liu, Kefeng
    Sun, Xiaofeng
    Yang, Xiaokui
    JOURNAL OF ALGEBRAIC GEOMETRY, 2013, 22 (02) : 303 - 331
  • [34] Algebraicity of formal varieties and positivity of vector bundles
    Huayi Chen
    Mathematische Annalen, 2012, 354 : 171 - 192
  • [35] Stability of Einstein Metrics on Fiber Bundles
    Wang, Changliang
    Wang, Y. K.
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (01) : 490 - 515
  • [36] Tangent sphere bundles which are η-Einstein
    Druta-Romaniuc, S. L.
    Oproiu, V.
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2011, 16 (02): : 48 - 61
  • [37] Remarks on η-Einstein unit tangent bundles
    Y. D. Chai
    S. H. Chun
    J. H. Park
    K. Sekigawa
    Monatshefte für Mathematik, 2008, 155 : 31 - 42
  • [38] Stability of Einstein Metrics on Fiber Bundles
    Changliang Wang
    Y. K. Wang
    The Journal of Geometric Analysis, 2021, 31 : 490 - 515
  • [39] Einstein-Finsler vector bundles
    Aikou, T
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1997, 51 (3-4): : 363 - 384
  • [40] Remarks on η-Einstein unit tangent bundles
    Chai, Y. D.
    Chun, S. H.
    Park, J. H.
    Sekigawa, K.
    MONATSHEFTE FUR MATHEMATIK, 2008, 155 (01): : 31 - 42