STRONG PRUFER-RINGS AND THE RING OF FINITE FRACTIONS

被引:36
|
作者
LUCAS, TG
机构
[1] Department of Mathematics, University of North Carolina at Charlotte, Charlotte
关键词
D O I
10.1016/0022-4049(93)90162-M
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A finite fraction over a commutative ring R is a rational function of the form f = (a(n)X(n) + ... + a0)/(b(n)X(n) + ... + b0) for which fb(i) = a(i) and a(X), b(X) is-an-element-of R[X]. The collection of all such finite fractions forms a ring Q0(R) which sits between the total quotient ring of R and the complete ring of quotients of R. We introduce a new type of Prufer ring, referred to as a Q0-Prufer ring and defined as a ring R for which every ring between R and Q0(R) is integrally closed in Q0(R). It is shown that every strong Prufer ring is a Q0-Prufer ring and every Q0-Prufer ring is a Prufer ring. Each converse is shown to be false. However, being a strong Prufer ring is shown to be equivalent to being a Q0-Prufer ring with Q0(R) having Property A.
引用
收藏
页码:59 / 71
页数:13
相关论文
共 50 条
  • [41] ON Φ-FLAT MODULES AND Φ-PRUFER RINGS
    Zhao, Wei
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (05) : 1221 - 1233
  • [42] SEMIGROUP RINGS AS PRUFER RINGS - PRELIMINARY REPORT
    GILMER, R
    PARKER, T
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (05): : A475 - A475
  • [43] Curves and coherent Prufer rings
    Coquand, Thierry
    Lombardi, Henri
    Quitte, Claude
    JOURNAL OF SYMBOLIC COMPUTATION, 2010, 45 (12) : 1378 - 1390
  • [44] On φ-projective modules and φ-Prufer rings
    Zhao, Wei
    Wang, Fanggui
    Zhang, Xiaolei
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (07) : 3079 - 3090
  • [45] PRE-PRUFER RINGS
    BOISEN, MB
    SHELDON, PB
    PACIFIC JOURNAL OF MATHEMATICS, 1975, 58 (02) : 331 - 344
  • [46] Prufer Conditions in Commutative Rings
    Glaz, Sarah
    Schwarz, Ryan
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2011, 36 (06): : 967 - 983
  • [47] Prufer rings in a certain pullback
    Chang, Gyu Whan
    Kim, Hwankoo
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (05) : 2045 - 2063
  • [48] REDUCTIONS OF IDEALS IN PRuFER RINGS
    Jarrar, Mohammad
    Kabbaj, Salah-Eddine
    JOURNAL OF COMMUTATIVE ALGEBRA, 2023, 15 (01) : 45 - 54
  • [49] LOCAL CHARACTERIZATION OF PRUFER RINGS
    EGGERT, N
    RUTHERFO.H
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1971, 250 : 109 - &
  • [50] Local types of Prufer rings
    Klingler, Lee
    Lucas, Thomas G.
    Sharma, Madhav
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (03)