THE SINGULARITY ANALYSIS FOR NEARLY INTEGRABLE SYSTEMS - HOMOCLINIC INTERSECTIONS AND LOCAL MULTIVALUEDNESS

被引:17
|
作者
GORIELY, A [1 ]
TABOR, M [1 ]
机构
[1] FREE UNIV BRUSSELS,SERV PHYS STAT,B-1050 BRUSSELS,BELGIUM
来源
PHYSICA D | 1995年 / 85卷 / 1-2期
关键词
D O I
10.1016/0167-2789(94)00137-F
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, a new perturbative scheme for nonintegrable ordinary differential equations is proposed. These perturbative expansions are based on the singularity analysis of the unperturbed system and is performed in the neighborhood of its singularities. Under suitable conditions on the homoclinic structure of the unperturbed system, the Melnikov vector can be computed based on the knowledge of the Laurent expansions of the solutions. The existence of transverse homoclinic intersections is therefore explicitly related to the existence of critical points for the solutions in the complex plane of the independent variable.
引用
收藏
页码:93 / 125
页数:33
相关论文
共 50 条
  • [21] Arnold diffusion for nearly integrable Hamiltonian systems
    Cheng, Chong-Qing
    Xue, Jinxin
    SCIENCE CHINA-MATHEMATICS, 2023, 66 (08) : 1649 - 1712
  • [22] Arnold diffusion for nearly integrable Hamiltonian systems
    Chong-Qing Cheng
    Jinxin Xue
    Science China(Mathematics), 2023, 66 (08) : 1649 - 1712
  • [23] Arnold diffusion for nearly integrable Hamiltonian systems
    Chong-Qing Cheng
    Jinxin Xue
    Science China Mathematics, 2023, 66 : 1649 - 1712
  • [24] Wave patterns in nearly-integrable systems
    Ogawa, T
    TOHOKU MATHEMATICAL PUBLICATIONS, NO 8: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ASYMPTOTICS IN NONLINEAR DIFFUSIVE SYSTEMS, 1998, : 139 - 148
  • [25] ON THE SINGULARITY ANALYSIS OF INTERSECTING SEPARATRICES IN NEAR-INTEGRABLE DYNAMIC-SYSTEMS
    BOUNTIS, T
    PAPAGEORGIOU, V
    BIER, M
    PHYSICA D, 1987, 24 (1-3): : 292 - 304
  • [26] Invariant tori for nearly integrable Hamiltonian systems with degeneracy
    Xu, JX
    You, JG
    Qiu, QJ
    MATHEMATISCHE ZEITSCHRIFT, 1997, 226 (03) : 375 - 387
  • [27] Nearly-integrable dissipative systems and celestial mechanics
    A. Celletti
    S. Di Ruzza
    C. Lhotka
    L. Stefanelli
    The European Physical Journal Special Topics, 2010, 186 : 33 - 66
  • [28] INSTABILITY IN NEARLY INTEGRABLE HAMILTONIAN SYSTEMS: GEOMETRIC METHODS
    Seara, T. M.
    XVIITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2014, : 282 - 282
  • [29] Geometry of KAM tori for nearly integrable Hamiltonian systems
    Broer, Henk
    Cushman, Richard
    Fasso, Francesco
    Takens, Floris
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2007, 27 : 725 - 741
  • [30] Nearly-integrable dissipative systems and celestial mechanics
    Celletti, A.
    Di Ruzza, S.
    Lhotka, C.
    Stefanelli, L.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2010, 186 (01): : 33 - 66