A CFD technique to investigate the chocked flow and heat transfer characteristic in a micro-channel heat sink

被引:2
|
作者
Azari, Ahmad [1 ]
Bahraini, Abdorrasoul [2 ]
Marhamati, Saeideh [1 ]
机构
[1] Persian Gulf Univ, Dept Chem Engn, Oil Gas & Petrochem Engn, Bushehr 7516913817, Iran
[2] Shiraz Univ Technol, Mech & Aerosp Engn, Shiraz, Iran
关键词
Choking; compressible flow; heat transfer; micro-channel;
D O I
10.1142/S2047684115500074
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this research, a Computational Fluid Dynamics (CFD) technique was used to investigate the effect of choking on the flow and heat transfer characteristics of a typical micro-channel heat sink. Numerical simulations have been carried out using Spalart-Allmaras model. Comparison of the numerical results for the heat transfer rate, mass flow rate and Stanton number with the experimental data were conducted. Relatively good agreement was achieved with maximum relative error 16%, and 8% for heat transfer and mass flow rate, respectively. Also, average relative error 9.2% was obtained for the Stanton number in comparison with the experimental values. Although, the results show that the majority of heat was transferred in the entrance region of the channel, but the heat transfer in micro-channels can also be affected by choking at channel exit. Moreover, the results clearly show that, the location where the flow is choked (at the vicinity of the channel exit) is especially important in determining the heat transfer phenomena. It was found that Spalart-Allmaras model is capable to capture the main features of the choked flow. Also, the effects of choking on the main characteristics of the flow was presented and discussed.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] A Numerical Analysis of the Enhanced Performance in Heat Transfer of a Manifold Micro-Channel Heat Sink
    Tang W.
    Sun L.-C.
    Liu H.-T.
    Xie G.
    Tang J.-G.
    Bao J.-J.
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2018, 47 (06): : 864 - 868
  • [22] Subcooled flow boiling in multiple parallel rectangular micro-channel heat sink: Development of heat transfer correlation
    Rohini, Ajith Krishnan
    Choi, Won -Woo
    Kim, Sung -Min
    APPLIED THERMAL ENGINEERING, 2024, 250
  • [23] Experimental Research on the Flow Boiling Heat Transfer Characteristic of Dilute Emulsion in Micro-Channel
    Zhang Z.
    Wu Y.
    He K.
    Yan X.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2023, 57 (04): : 60 - 70
  • [24] A numerical and experimental investigation of flow maldistribution in a micro-channel heat sink
    Kumaraguruparan, G.
    Kumaran, R. Manikanda
    Sornakumar, T.
    Sundararajan, T.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2011, 38 (10) : 1349 - 1353
  • [25] Heat Transfer Performance of Lotus-type Porous Copper Micro-channel Heat Sink
    Chen, Haifeng
    Liu, Yuan
    Chen, Liutao
    Li, Yanxiang
    MATERIALS PERFORMANCE, MODELING AND SIMULATION, 2013, 749 : 414 - 420
  • [26] ANN, numerical and experimental analysis on the jet impingement nanofluids flow and heat transfer characteristics in the micro-channel heat sink
    Naphon, P.
    Wiriyasart, S.
    Arisariyawong, T.
    Nakharintr, L.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 131 : 329 - 340
  • [27] EFFECTS OF GEOMETRIC PARAMETERS ON FLUID-FLOW AND HEAT TRANSFER IN MICRO-CHANNEL HEAT SINK WITH TRAPEZOIDAL GROOVES IN SIDEWALLS
    Zhu, Qifeng
    Zhu, Feiyue
    Fu, Dianwei
    Zhang, Anchao
    Sen Zhang
    THERMAL SCIENCE, 2022, 26 (4B): : 3641 - 3651
  • [28] Numerical Simulation and size optimization of the flow channel of rectangular micro-channel heat sink
    He, Ying
    Shao, Baodong
    Cheng, Heming
    Tang, Yanjun
    ADVANCES IN COMPUTATIONAL MODELING AND SIMULATION, PTS 1 AND 2, 2014, 444-445 : 568 - 573
  • [29] CFD analysis for heat transfer and fluid flow in microchannel heat sink with micro inserts
    Kumar, Shailesh Ranjan
    Singh, Satyendrta
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 11213 - 11216
  • [30] Heat transfer characteristics of gaseous slip flow in a micro-channel
    Chungpyo Hong
    Yutaka Asako
    Koichi Suzuki
    Yoon-Eui Nahm
    Journal of Mechanical Science and Technology, 2010, 24 : 2577 - 2585