SINGULAR PERTURBATION THEORY AND GEOPHYSICS

被引:38
|
作者
CARRIER, GF
机构
关键词
D O I
10.1137/1012041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:175 / &
相关论文
共 50 条
  • [21] Geometric singular perturbation theory in biological practice
    Hek, Geertje
    JOURNAL OF MATHEMATICAL BIOLOGY, 2010, 60 (03) : 347 - 386
  • [22] ALGEBRAIC PERTURBATION-THEORY FOR SINGULAR POTENTIALS
    BARUT, AO
    BEKER, H
    RADOR, T
    PHYSICS LETTERS A, 1994, 194 (1-2) : 1 - 6
  • [23] Spectral Deformation in a Problem of Singular Perturbation Theory
    Stepin, S. A.
    Fufaev, V. V.
    DOKLADY MATHEMATICS, 2019, 99 (01) : 60 - 63
  • [24] Harmonic Maps to Buildings and Singular Perturbation Theory
    Katzarkov, Ludmil
    Noll, Alexander
    Pandit, Pranav
    Simpson, Carlos
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 336 (02) : 853 - 903
  • [25] A Survey on Singular Perturbation Theory in Aerospace Application
    Ren, Wenjing
    Jiang, Bin
    Yang, Hao
    2016 IEEE CHINESE GUIDANCE, NAVIGATION AND CONTROL CONFERENCE (CGNCC), 2016, : 675 - 680
  • [26] Geometric singular perturbation theory in biological practice
    Geertje Hek
    Journal of Mathematical Biology, 2010, 60 : 347 - 386
  • [27] Harmonic Maps to Buildings and Singular Perturbation Theory
    Ludmil Katzarkov
    Alexander Noll
    Pranav Pandit
    Carlos Simpson
    Communications in Mathematical Physics, 2015, 336 : 853 - 903
  • [28] Perturbation theory for singular potentials in quantum mechanics
    Sen, D
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1999, 14 (11): : 1789 - 1807
  • [29] Geometric Singular Perturbation Theory for Systems with Symmetry
    Cardin, Pedro Toniol
    Teixeira, Marco Antonio
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2022, 34 (02) : 775 - 787
  • [30] On localization of the spectrum in a problem in singular perturbation theory
    Stepin, SA
    Arzhanov, AA
    RUSSIAN MATHEMATICAL SURVEYS, 2002, 57 (03) : 608 - 610