GLOBAL STRUCTURAL STABILITY OF A SADDLE NODE BIFURACTION

被引:5
|
作者
ROBINSON, C
机构
关键词
D O I
10.2307/1997778
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
下载
收藏
页码:155 / 171
页数:17
相关论文
共 50 条
  • [21] AT THE OTHER SIDE OF A SADDLE-NODE
    MISIUREWICZ, M
    KAWCZYNSKI, AL
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 131 (03) : 605 - 617
  • [22] No stability switching at saddle-node bifurcations of solitary waves in generalized nonlinear Schrodinger equations
    Yang, Jianke
    PHYSICAL REVIEW E, 2012, 85 (03):
  • [23] The number and stability of limit cycles for planar piecewise linear systems of node-saddle type
    Wang, Jiafu
    Chen, Xiaoyan
    Huang, Lihong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 469 (01) : 405 - 427
  • [24] NEW METHODS FOR COMPUTING A SADDLE-NODE BIFURCATION POINT FOR VOLTAGE STABILITY ANALYSIS - DISCUSSION
    CANIZARES, CA
    FISCHL, R
    WU, T
    SRIVASTAVA, SC
    SRIVASTAVA, KN
    SINGH, SN
    JOSHI, SK
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1995, 10 (02) : 986 - 989
  • [25] Study of STATCOM and UPFC controllers for voltage stability evaluated by saddle-node bifurcation analysis
    Kazemi, A.
    Vahidinasab, V.
    Mosallanejad, A.
    FIRST INTERNATIONAL POWER & ENERGY CONFERENCE (PECON 2006), PROCEEDINGS, 2006, : 191 - 195
  • [26] Linear stability and saddle-node bifurcation of electromagnetically driven electrolyte flow in an annular layer
    McCloughan, John
    Suslov, Sergey A.
    JOURNAL OF FLUID MECHANICS, 2020, 887
  • [27] Saddle-node bifurcation point calculation of voltage stability based on adjoint system theory
    Wang, Kaipeng
    Zhang, Yiwei
    Chen, Lei
    Min, Yong
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2009, 33 (14): : 7 - 11
  • [28] Quantifying Node Importance over Network Structural Stability
    Zhang, Fan
    Linghu, Qingyuan
    Xie, Jiadong
    Wang, Kai
    Lin, Xuemin
    Zhang, Wenjie
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 3217 - 3228
  • [29] Global Stability Analysis of Two-dimensional LTI Switched Systems with Saddle Points
    Zhu, Liying
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 4669 - 4674
  • [30] Quadratic Differential Systems with a Finite Saddle-Node and an Infinite Saddle-Node (1,1)SN - (A)
    Artes, Joan C.
    Mota, Marcos C.
    Rezende, Alex C.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (02):