CYCLIC-GMP-MEDIATED DECREASE IN PERMEABILITY OF HUMAN UMBILICAL AND PULMONARY-ARTERY ENDOTHELIAL-CELL MONOLAYERS

被引:94
|
作者
WESTENDORP, RGJ
DRAIJER, R
MEINDERS, AE
VANHINSBERGH, VWM
机构
[1] TNO,IVVO,GAUBIUS LAB,2300 AK LEIDEN,NETHERLANDS
[2] UNIV HOSP LEIDEN,DEPT GEN INTERNAL MED,LEIDEN,NETHERLANDS
关键词
CYCLIC AMP; NITRIC OXIDE; THROMBIN; TRANSENDOTHELIAL ELECTRICAL RESISTANCE;
D O I
10.1159/000159030
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Endothelial cell contraction plays a pivotal role in the increased extravasation of fluid and macromolecules in vascular leakage. Previous studies have indicated that elevation of the adenosine 3',5'-cyclic monophosphate (cAMP) concentration can improve the endothelial barrier function. In analogy with smooth muscle cell contraction, which is inhibited by both cAMP and guanosine 3',5'-cyclic monophosphate (cGMP), we have compared the role of cAMP and cGMP in the regulation of the permeability of human endothelial cell monolayers. The cellular cGMP concentration was elevated 3- to 5-fold after addition of 10(-7) M atrial natriuretic peptide (ANP) or 10(-4) M sodium nitroprusside (SNP), both under basal and thrombin-stimulated conditions. After exposure to thrombin, cGMP generation by ANP or SNP or addition of 8-bromo-cGMP significantly suppressed the increase in permeability. Inhibition of nitric oxide production with 10(-4) M N-G-nitro-L-arginine methyl ester increased the permeability of endothelial monolayers in the majority of the tested cultures, an effect that could be counteracted by addition of 8-bromo-cGMP or ANP. An increase of cAMP upon the addition of forskolin reduced the permeability in all endothelial cell strains under basal conditions and after exposure to thrombin. The forskolin; and 8-bromo-cGMP-mediated decreases in permeability were accompanied by increases in transendothelial electrical resistance. These in vitro data indicate that, in addition to cAMP, cGMP can act as a potent fine-regulator of endothelial permeability.
引用
收藏
页码:42 / 51
页数:10
相关论文
共 50 条