GALOIS COHOMOLOGY AND REAL ALGEBRAIC QUOTIENTS

被引:5
|
作者
BREMIGAN, RJ
机构
[1] Department of Mathematic, Duke University, Durham
关键词
D O I
10.1006/jabr.1993.1157
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a reductive complex algebraic group with a real structure. If H ⊂ G is reductive, then the affine variety G/H possesses a finite number of inequivalent real structures which are compatible with the left action of G. We show how to distinguish these equivalence classes using NGH/H-modules. The (harder) problem or separating the equivalence classes with G-modules is related to another problem:identifying the real points of an algebraic quotient V//G that come from the realpoints of V. © 1993 Academic Press, Inc.
引用
收藏
页码:275 / 305
页数:31
相关论文
共 50 条
  • [31] Real homogeneous spaces, Galois cohomology, and Reeder puzzles
    Borovoi, Mikhail
    Evenor, Zachi
    JOURNAL OF ALGEBRA, 2016, 467 : 307 - 365
  • [32] GALOIS COHOMOLOGY AND GALOIS REPRESENTATIONS
    SEN, S
    INVENTIONES MATHEMATICAE, 1993, 112 (03) : 639 - 656
  • [33] Galois cohomology
    Washington, LC
    MODULAR FORMS AND FERMAT'S LAST THEOREM, 1997, : 101 - 120
  • [34] The etale and equivariant cohomology of a real algebraic variety
    Krasnov, VA
    IZVESTIYA MATHEMATICS, 1998, 62 (05) : 1013 - 1034
  • [35] On the surjectivity of localization maps for Galois cohomology of unipotent algebraic groups over fields
    Thang, NQ
    Tan, ND
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (08) : 3169 - 3177
  • [36] GALOIS COHOMOLOGY OF REAL SEMISIMPLE GROUPS VIA KAC LABELINGS
    Borovoi, M.
    Timashev, D. A.
    TRANSFORMATION GROUPS, 2021, 26 (02) : 433 - 477
  • [37] On the first Galois Cohomology group of the algebraic group SL1(D)
    Hazrat, R.
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (02) : 381 - 387
  • [38] GALOIS COHOMOLOGY OF REAL SEMISIMPLE GROUPS VIA KAC LABELINGS
    M. BOROVOI
    D. A. TIMASHEV
    Transformation Groups, 2021, 26 : 433 - 477
  • [39] Galois cohomology of real quasi-connected reductive groups
    Borovoi, Mikhail
    Gornitskii, Andrei A.
    Rosengarten, Zev
    ARCHIV DER MATHEMATIK, 2022, 118 (01) : 27 - 38
  • [40] Galois cohomology of real quasi-connected reductive groups
    Mikhail Borovoi
    Andrei A. Gornitskii
    Zev Rosengarten
    Archiv der Mathematik, 2022, 118 : 27 - 38