PERTURBATION-THEORY FOR THE RANK-DEFICIENT EQUALITY CONSTRAINED LEAST-SQUARES PROBLEM

被引:24
|
作者
WEI, MS
机构
关键词
EQUALITY CONSTRAINED; LEAST SQUARES; RANK-DEFICIENT; PERTURBATION;
D O I
10.1137/0729084
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents perturbation theory for the equality constrained least squares problem min f is-an-element-of S \\Kf - g\\2 with S = {f : \\Lf - h\\2 = min(y is-an-element of Cn) \\Ly - h \\2} (LSE), in which L and (L/K) may not be of full rank. The analysis generalizes the results of Elden [4]. Perturbation theorems for the LSE problem are proved. Numerical experiments are also given to verify the error bounds.
引用
收藏
页码:1462 / 1481
页数:20
相关论文
共 50 条
  • [2] ALGEBRAIC PROPERTIES OF THE RANK-DEFICIENT EQUALITY-CONSTRAINED AND WEIGHTED LEAST-SQUARES PROBLEMS
    WEI, MS
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 161 : 27 - 43
  • [3] Effects of Different Objective Functions in Inequality Constrained and Rank-Deficient Least-Squares Problems
    Roese-Koerner, Lutz
    Schuh, Wolf-Dieter
    [J]. VIII HOTINE-MARUSSI SYMPOSIUM ON MATHEMATICAL GEODESY, 2016, 142 : 325 - 331
  • [4] Block SOR methods for rank-deficient least-squares problems
    Santos, CH
    Silva, BPB
    Yuan, JY
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 100 (01) : 1 - 9
  • [5] Efficient solution of the rank-deficient linear least squares problem
    Quintana-Ortí, G
    Quintana-Ortí, ES
    Petitet, A
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (03): : 1155 - 1163
  • [6] Regularization Methods for Uniformly Rank-Deficient Nonlinear Least-Squares Problems
    J. Eriksson
    P. A. Wedin
    M. E. Gulliksson
    I. Söderkvist
    [J]. Journal of Optimization Theory and Applications, 2005, 127 : 1 - 26
  • [7] Regularization methods for uniformly rank-deficient nonlinear least-squares problems
    Eriksson, J
    Wedin, PA
    Gulliksson, ME
    Söderkvist, I
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2005, 127 (01) : 1 - 26
  • [8] Chebyshev polynomial acceleration for block SOR methods for solving the rank-deficient least-squares problem
    Zheng, Bing
    Duan, Liying
    Wang, Ke
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (01) : 6 - 20
  • [9] DOA Estimation with a Rank-deficient Covariance matrix: A Regularized Least-squares approach
    Ali, Hussain
    Ballal, Tarig
    Al-Naffouri, Tareq Y.
    Sharawi, Mohammad S.
    [J]. 2020 IEEE USNC-CNC-URSI NORTH AMERICAN RADIO SCIENCE MEETING (JOINT WITH AP-S SYMPOSIUM), 2020, : 87 - 88
  • [10] On an iterative method for solving the least squares problem of rank-deficient systems
    Sun, Le-ping
    Wei, Yi-min
    Zhou, Jie-yong
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (03) : 532 - 541