DIAMETERS OF CUBIC GRAPHS

被引:10
|
作者
JORGENSEN, LK
机构
[1] Department of Mathematics and Computer Science, Aalborg University, DK-9220 Aalborg Ø
关键词
D O I
10.1016/0166-218X(92)90144-Y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that a graph with maximum degree 3 and diameter d greater-than-or-equal-to 4 cannot have exactly two vertices less than the Moore bound.
引用
收藏
页码:347 / 351
页数:5
相关论文
共 50 条
  • [1] NONEXISTENCE OF CERTAIN CUBIC GRAPHS WITH SMALL DIAMETERS
    JORGENSEN, LK
    DISCRETE MATHEMATICS, 1993, 114 (1-3) : 265 - 273
  • [2] THE MINIMUM-ORDER 3-CONNECTED CUBIC GRAPHS WITH SPECIFIED DIAMETERS
    MYERS, BR
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1980, 27 (08): : 698 - 709
  • [3] NONEXISTENCE OF CUBIC DDI GRAPHS OF ORDER 16 WITH DIAMETERS 4, 5, 6
    Huilgol, Medha Itagi
    Rajeshwari, M.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2015, 16 (01): : 13 - 30
  • [4] On the resistance diameters of graphs and their line graphs
    Xu, Si-Ao
    Li, Yun-Xiang
    Hua, Hongbo
    Pan, Xiang-Feng
    DISCRETE APPLIED MATHEMATICS, 2022, 306 : 174 - 185
  • [5] DIAMETERS OF RANDOM GRAPHS
    KLEE, V
    LARMAN, D
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1981, 33 (03): : 618 - 640
  • [6] DIAMETERS OF POLYHEDRAL GRAPHS
    KLEE, V
    CANADIAN JOURNAL OF MATHEMATICS, 1964, 16 (03): : 602 - &
  • [7] On ω-commuting graphs and their diameters
    Raja, P.
    Vaezpour, S. M.
    MATHEMATISCHE NACHRICHTEN, 2011, 284 (5-6) : 781 - 789
  • [8] DIAMETERS OF PSEUDOSYMMETRIC GRAPHS
    KNYAZEV, AV
    MATHEMATICAL NOTES, 1987, 41 (5-6) : 473 - 482
  • [9] OPEN DIAMETERS ON GRAPHS
    Charatonik, Wlodzimierz J.
    Roe, Robert P.
    Tiryaki, Ismail Ugur
    HOUSTON JOURNAL OF MATHEMATICS, 2020, 46 (02): : 537 - 559
  • [10] On the diameters of commuting graphs
    Akbari, S.
    Mohammadian, A.
    Radjavi, H.
    Raja, P.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 418 (01) : 161 - 176