On the diameters of commuting graphs

被引:69
|
作者
Akbari, S.
Mohammadian, A.
Radjavi, H.
Raja, P.
机构
[1] Inst Studies Theoret Phys & Math, Tehran, Iran
[2] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
[3] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
commuting graph; diameter; division ring; idempotent;
D O I
10.1016/j.laa.2006.01.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Yhe commuting graph of a ring R, denoted by Gamma(R), is a graph whose vertices are all non-central elements of R and two distinct vertices x and y are adjacent if and only if xy = yx. Let D be a division ring and n >= 3. In this paper we investigate the diameters of Gamma(M-n(D)) and determine the diameters of some induced subgraphs of Gamma(M-n(D)), such as the induced subgraphs on the set of all non-scalar non-invertible, nilpotent, idempotent, and involution matrices in M-n(D). For every field F, it is shown that if Gamma(M-n(F)) is a connected graph, then diam Gamma(M-n(F)) <= 6. We conjecture that if Gamma(M-n(F)) is a connected graph, then diam Gamma(M-n(F)) <= 5. We show that if F is an algebraically closed field or n is a prime number and Gamma(M-n(F)) is a connected graph, then diam Gamma(M-n(F)) = 4. Finally, we present some applications to the structure of pairs of idempotents which may prove of independent interest. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:161 / 176
页数:16
相关论文
共 50 条
  • [1] On ω-commuting graphs and their diameters
    Raja, P.
    Vaezpour, S. M.
    MATHEMATISCHE NACHRICHTEN, 2011, 284 (5-6) : 781 - 789
  • [2] DIAMETERS OF CONNECTED COMPONENTS OF COMMUTING GRAPHS
    Dolzan, David
    Konvalinka, Matjaz
    Oblak, Polona
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2013, 26 : 433 - 445
  • [3] On the Diameters of Commuting Graphs of Permutational Wreath Products
    Yu. Yu. Leshchenko
    Ukrainian Mathematical Journal, 2014, 66 : 732 - 742
  • [4] Diameters of commuting graphs of matrices over semirings
    David Dolžan
    Damjana Kokol Bukovšek
    Polona Oblak
    Semigroup Forum, 2012, 84 : 365 - 373
  • [5] Diameters of commuting graphs of matrices over semirings
    Dolzan, David
    Bukovsek, Damjana Kokol
    Oblak, Polona
    SEMIGROUP FORUM, 2012, 84 (02) : 365 - 373
  • [6] Diameters of the Commuting Graphs of Simple Lie Algebras
    Wang, Dengyin
    Xia, Chunguang
    JOURNAL OF LIE THEORY, 2017, 27 (01) : 139 - 154
  • [7] On the Diameters of Commuting Graphs of Permutational Wreath Products
    Leshchenko, Yu. Yu.
    UKRAINIAN MATHEMATICAL JOURNAL, 2014, 66 (05) : 732 - 742
  • [8] On diameters of commuting graphs of matrix algebras over division rings
    Nam, Cao Minh
    Bien, Mai Hoang
    Hai, Bui Xuan
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2025, 24 (06)
  • [9] On diameters estimations of the commuting graphs of Sylow p-subgroups of the symmetric groups
    Leshchenko, Yu Yu
    Zoria, L., V
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2013, 5 (01) : 70 - 78
  • [10] On the Diameters of Commuting Graphs Arising from Random Skew-Symmetric Matrices
    Hegarty, Peter
    Zhelezov, Dmitrii
    COMBINATORICS PROBABILITY & COMPUTING, 2014, 23 (03): : 449 - 459