Exact Travelling Wave Solutions for Konopelchenko-Dubrovsky Equation by the First Integral Method

被引:0
|
作者
Taghizadeh, N. [1 ]
Mirzazadeh, M. [1 ]
机构
[1] Univ Guilan, Fac Math, Dept Math, POB 1914, Rasht, Iran
关键词
First integral method; Konopelchenko-Dubrovsky equation;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the first integral method is used to construct exact travelling wave solutions of Konopelchenko-Dubrovsky equation. The first integral method is algebraic direct method for obtaining exact solutions of nonlinear partial differential equations. This method can be applied to non-integrable equations as well as to integrable ones. This method is based on the theory of commutative algebra.
引用
收藏
页码:153 / 161
页数:9
相关论文
共 50 条
  • [21] The -dimensional Konopelchenko-Dubrovsky equation: nonlocal symmetries and interaction solutions
    Ren, Bo
    Cheng, Xue-Ping
    Lin, Ji
    NONLINEAR DYNAMICS, 2016, 86 (03) : 1855 - 1862
  • [22] Exact solutions of space-time fractional KdV-MKdV equation and Konopelchenko-Dubrovsky equation
    Tang, Bo
    Tao, Jiajia
    Chen, Shijun
    Qu, Junfeng
    Wang, Qian
    Ding, Ling
    OPEN PHYSICS, 2020, 18 (01): : 871 - 880
  • [23] Infinitely Many Symmetries of Konopelchenko-Dubrovsky Equation
    LI Zhi--Fang
    RUAN Hang--Yu Department of Physics
    CommunicationsinTheoreticalPhysics, 2005, 44 (09) : 385 - 388
  • [24] Transverse spectral instabilities in Konopelchenko-Dubrovsky equation
    Bhavna
    Pandey, Ashish Kumar
    Singh, Sudhir
    STUDIES IN APPLIED MATHEMATICS, 2023, 151 (03) : 1053 - 1071
  • [25] Abundant multisoliton structures of the Konopelchenko-Dubrovsky equation
    Zhao, Hong
    Han, Ji-Guang
    Wang, Wei-Tao
    An, Hong-Yong
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2006, 56 (12) : 1381 - 1388
  • [26] Lump soliton wave solutions for the (2+1)-dimensional Konopelchenko-Dubrovsky equation and KdV equation
    Khater, Mostafa M. A.
    Lu, Dianchen
    Attia, Raghda A. M.
    MODERN PHYSICS LETTERS B, 2019, 33 (18):
  • [27] Infinitely many symmetries of Konopelchenko-Dubrovsky equation
    Li, ZF
    Ruan, HY
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2005, 44 (03) : 385 - 388
  • [28] Symbolic computation and new families of exact non-travelling wave solutions of (2+1)-dimensional Konopelchenko-Dubrovsky equations
    Sheng, Zhang
    CHAOS SOLITONS & FRACTALS, 2007, 31 (04) : 951 - 959
  • [29] Exact solutions of the (2+1)-dimensional Konopelchenko-Dubrovsky system using Sardar sub-equation method
    Tarla, Sibel
    Ali, Karmina K.
    Yusuf, Abdullahi
    Uzun, Berna
    Salahshour, Soheil
    MODERN PHYSICS LETTERS B, 2025, 39 (13):
  • [30] New Exponential and Complex Traveling Wave Solutions to the Konopelchenko-Dubrovsky Model
    Dusunceli, Faruk
    ADVANCES IN MATHEMATICAL PHYSICS, 2019, 2019