PARTITION PROBLEM OF SYLVESTER,JJ

被引:0
|
作者
ANDREWS, GE
机构
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:571 / &
相关论文
共 50 条
  • [11] A new result on Sylvester's problem
    Zhou, Junling
    Chang, Yanxun
    DISCRETE MATHEMATICS, 2014, 331 : 15 - 19
  • [12] THE PARTITION PROBLEM
    CHOPRA, S
    RAO, MR
    MATHEMATICAL PROGRAMMING, 1993, 59 (01) : 87 - 115
  • [13] A PARTITION PROBLEM
    SANDER, JW
    JOURNAL OF NUMBER THEORY, 1994, 48 (02) : 162 - 182
  • [14] A Generalized Sylvester Problem and a Generalized Fermat-Torricelli Problem
    Nguyen Mau Nam
    Nguyen Hoang
    JOURNAL OF CONVEX ANALYSIS, 2013, 20 (03) : 669 - 687
  • [15] A generalisation of Sylvester’s problem to higher dimensions
    Ball S.
    Monserrat J.
    Journal of Geometry, 2017, 108 (2) : 529 - 543
  • [16] RANGES OF SYLVESTER MAPS AND A MINIMAL RANK PROBLEM
    Ran, Andre C. M.
    Rodman, Leiba
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2010, 20 : 126 - 135
  • [17] On the Sylvester–Gallai and the orchard problem for pseudoline arrangements
    Jürgen Bokowski
    Piotr Pokora
    Periodica Mathematica Hungarica, 2018, 77 : 164 - 174
  • [18] SYLVESTER'S PROBLEM AND MOCK HEEGNER POINTS
    Dasgupta, Samit
    Voight, John
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (08) : 3257 - 3273
  • [19] A SIMULATION STUDY OF SYLVESTER PROBLEM IN 3 DIMENSIONS
    DO, KA
    SOLOMON, H
    JOURNAL OF APPLIED PROBABILITY, 1986, 23 (02) : 509 - 513
  • [20] Subresultants, Sylvester sums and the rational interpolation problem
    D'Andrea, Carlos
    Krick, Teresa
    Szanto, Agnes
    JOURNAL OF SYMBOLIC COMPUTATION, 2015, 68 : 72 - 83