A MIXED FINITE-ELEMENT METHOD FOR THE CAHN-HILLIARD AND THE SIVASHINSKY EQUATIONS

被引:0
|
作者
MILNER, FA
机构
[1] PURDUE UNIV,DEPT MATH,W LAFAYETTE,IN 47907
[2] UNIV ROME,DIPARTIMENTO MATEMAT,I-00133 ROME,ITALY
来源
MATEMATICA APLICADA E COMPUTACIONAL | 1990年 / 9卷 / 01期
关键词
CAHN-HILLIARD EQUATION; PHASE SEPARATIONS; MIXED METHODS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A mixed finite element method requiring only continuous finite elements is presented for the approximation of the solution of the fourth order Cahn-Hilliard equation of phase separation and for the Sivashinsky equation of solid-liquid interface in binary alloys. Optimal error bounds are derived in various norms, and numerical results for the one-dimensional Cahn-Hilliard equation are given using Crank-Nicolson time discretization.
引用
收藏
页码:3 / 22
页数:20
相关论文
共 50 条
  • [41] Cahn-Hilliard equations on an evolving surface
    Caetano, D.
    Elliott, C. M.
    [J]. EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2021, 32 (05) : 937 - 1000
  • [42] An adaptive finite element method based on Superconvergent Cluster Recovery for the Cahn-Hilliard equation
    Tian, Wenyan
    Chen, Yaoyao
    Meng, Zhaoxia
    Jia, Hongen
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (03): : 1323 - 1343
  • [43] Postprocessing Mixed Finite Element Methods For Solving Cahn-Hilliard Equation: Methods and Error Analysis
    Wang, Wansheng
    Chen, Long
    Zhou, Jie
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2016, 67 (02) : 724 - 746
  • [44] On a system of coupled Cahn-Hilliard equations
    Di Primio, Andrea
    Grasselli, Maurizio
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 67
  • [45] The least squares spectral element method for the Cahn-Hilliard equation
    Fernandino, M.
    Dorao, C. A.
    [J]. APPLIED MATHEMATICAL MODELLING, 2011, 35 (02) : 797 - 806
  • [46] Finite element approximation of the Cahn-Hilliard equation with concentration dependent mobility
    Barrett, JW
    Blowey, JF
    [J]. MATHEMATICS OF COMPUTATION, 1999, 68 (226) : 487 - 517
  • [47] On fully practical finite element approximations of degenerate Cahn-Hilliard systems
    Barrett, JW
    Blowey, JF
    Garcke, H
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (04): : 713 - 748
  • [48] DISCONTINUOUS GALERKIN FINITE ELEMENT APPROXIMATION OF THE CAHN-HILLIARD EQUATION WITH CONVECTION
    Kay, David
    Styles, Vanessa
    Sueli, Endre
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (04) : 2660 - 2685
  • [49] Finite element simulation and efficient algorithm for fractional Cahn-Hilliard equation
    Wang, Feng
    Chen, Huanzhen
    Wang, Hong
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 356 : 248 - 266
  • [50] ERROR ANALYSIS OF A FINITE ELEMENT APPROXIMATION OF A DEGENERATE CAHN-HILLIARD EQUATION
    Agosti, A.
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (03): : 827 - 867