PREDICTING CHAOTIC TIME-SERIES WITH WAVELET NETWORKS

被引:0
|
作者
CAO, LY
HONG, YG
FANG, HP
HE, GW
机构
[1] ACAD SINICA,INST SYST SCI,BEIJING 100080,PEOPLES R CHINA
[2] ACAD SINICA,INST MECH,LNM,BEIJING 100080,PEOPLES R CHINA
来源
PHYSICA D | 1995年 / 85卷 / 1-2期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new technique, wavelet network, is introduced to predict chaotic time series. By using this technique, firstly, we make accurate short-term predictions of the time series from chaotic attractors. Secondly, we make accurate predictions of the values and bifurcation structures of the time series from dynamical systems whose parameter values are changing with time. Finally we predict chaotic attractors by making long-term predictions based on remarkably few data points, where the correlation dimensions of predicted attractors are calculated and are found to be almost identical to those of actual attractors.
引用
收藏
页码:225 / 238
页数:14
相关论文
共 50 条
  • [41] Single-step prediction of chaotic time series using wavelet-networks
    Garcia-Trevino, E. S.
    Alarcon-Aquino, V.
    CERMA2006: ELECTRONICS, ROBOTICS AND AUTOMOTIVE MECHANICS CONFERENCE, VOL 1, PROCEEDINGS, 2006, : 243 - +
  • [42] MEASUREMENT OF THE LYAPUNOV SPECTRUM FROM A CHAOTIC TIME-SERIES
    SANO, M
    SAWADA, Y
    PHYSICAL REVIEW LETTERS, 1985, 55 (10) : 1082 - 1085
  • [43] ATTRACTOR RECONSTRUCTION FROM FILTERED CHAOTIC TIME-SERIES
    CHENNAOUI, A
    PAWELZIK, K
    LIEBERT, W
    SCHUSTER, HG
    PFISTER, G
    PHYSICAL REVIEW A, 1990, 41 (08): : 4151 - 4159
  • [44] FUNCTIONAL RECONSTRUCTION AND LOCAL PREDICTION OF CHAOTIC TIME-SERIES
    GIONA, M
    LENTINI, F
    CIMAGALLI, V
    PHYSICAL REVIEW A, 1991, 44 (06): : 3496 - 3502
  • [45] Application of chaotic time-series in slope displacement forecasting
    Liu, Yong-Jian
    Zhang, Bo-You
    Liaoning Gongcheng Jishu Daxue Xuebao (Ziran Kexue Ban)/Journal of Liaoning Technical University (Natural Science Edition), 2007, 26 (01): : 74 - 76
  • [46] DETERMINATION OF THE NOISE-LEVEL OF CHAOTIC TIME-SERIES
    SCHREIBER, T
    PHYSICAL REVIEW E, 1993, 48 (01): : R13 - R16
  • [47] MODEL-EQUATIONS FROM A CHAOTIC TIME-SERIES
    AGARWAL, AK
    AHALPARA, DP
    KAW, PK
    PRABHAKARA, HR
    SEN, A
    PRAMANA-JOURNAL OF PHYSICS, 1990, 35 (03): : 287 - 301
  • [48] Predicting chaotic time series with a partial model
    Hamilton, Franz
    Berry, Tyrus
    Sauer, Timothy
    PHYSICAL REVIEW E, 2015, 92 (01):
  • [49] PARAMETER-ESTIMATION FOR MODELS OF CHAOTIC TIME-SERIES
    ADKISON, MD
    JOURNAL OF MATHEMATICAL BIOLOGY, 1992, 30 (08) : 839 - 852
  • [50] RECOVERING THE ATTRACTOR - A REVIEW OF CHAOTIC TIME-SERIES ANALYSIS
    FRANK, GW
    LOOKMAN, T
    NERENBERG, MAH
    CANADIAN JOURNAL OF PHYSICS, 1990, 68 (09) : 711 - 718