GLOBAL BRANCHING THEOREM FOR SPATIAL PATTERNS OF REACTION-DIFFUSION SYSTEM

被引:2
|
作者
NISHIURA, Y
机构
关键词
D O I
10.3792/pjaa.55.201
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:201 / 204
页数:4
相关论文
共 50 条
  • [31] Oscillatory Turing patterns in a simple reaction-diffusion system
    Liu, Ruey-Tarng
    Liaw, Sy-Sang
    Maini, Philip K.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2007, 50 (01) : 234 - 238
  • [32] Global behaviour of a reaction-diffusion system modelling chemotaxis
    Gajewski, H
    Zacharias, K
    MATHEMATISCHE NACHRICHTEN, 1998, 195 : 77 - 114
  • [33] Global solution for degenerate nonlinear reaction-diffusion system
    Zhang, Gongan
    Journal of Mathematical Research and Exposition / Shu Hsueh Yen Chiu Yu Ping Lun, 1993, 13 (01):
  • [34] PULSES AND GLOBAL BIFURCATIONS IN A NONLOCAL REACTION-DIFFUSION SYSTEM
    GRAHAM, MD
    MIDDYA, U
    LUSS, D
    PHYSICAL REVIEW E, 1993, 48 (04): : 2917 - 2923
  • [35] GLOBAL SYMMETRY ASPECTS OF A COMPARTMENTALIZED REACTION-DIFFUSION SYSTEM
    PARISI, J
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1991, 22 (12) : 23 - 31
  • [36] Global dynamics of a reaction-diffusion system with mass conservation
    Latos, Evangelos
    Suzuki, Takashi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 411 (01) : 107 - 118
  • [37] REACTION-DIFFUSION SYSTEMS AND BRANCHING-PROCESSES
    SAFARYAN, RG
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1987, 31 (03) : 541 - 541
  • [38] GLOBAL EXISTENCE AND INTERNAL STABILIZATION FOR A REACTION-DIFFUSION SYSTEM POSED ON NON COINCIDENT SPATIAL DOMAINS
    Anita, Sebastian
    Fitzgibbon, William Edward
    Langlais, Michel
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2009, 11 (04): : 805 - 822
  • [39] Existence of spatial patterns in reaction-diffusion systems incorporating a prey refuge
    Guin, Lakshmi Narayan
    Chakravarty, Santabrata
    Mandal, Prashanta Kumar
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2015, 20 (04): : 509 - 527
  • [40] BIFURCATIONS OF FRONT DYNAMICS IN A REACTION-DIFFUSION SYSTEM WITH SPATIAL INHOMOGENEITIES
    SCHUTZ, P
    BODE, M
    PURWINS, HG
    PHYSICA D, 1995, 82 (04): : 382 - 397