ON A GENERALIZATION OF THE 3X+1 PROBLEM

被引:2
|
作者
MIGNOSI, F
机构
[1] DEPT MAT & APPL,I-90143 PALERMO,ITALY
[2] UNIV PARIS 07,LITP,F-75251 PARIS 05,FRANCE
关键词
D O I
10.1006/jnth.1995.1125
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the following analogue of the 3x + 1 function, [GRAPHICS] where beta > 1 is real, and [] is the ceiling function (next largest integer). The case beta = 3/2 is just the 3x + 1 function. We prove that for almost all beta, T-beta decreases iterates on average when 1 < beta < 2 and increases iterates on average when beta > 2, We find certain values of beta where the analogue of the 3x + 1 conjecture has an affirmative answer and other values where it has a negative answer. (C) 1995 Academic Press, Inc.
引用
收藏
页码:28 / 45
页数:18
相关论文
共 50 条
  • [21] THE SET OF RATIONAL CYCLES FOR THE 3X+1 PROBLEM
    LAGARIAS, JC
    ACTA ARITHMETICA, 1990, 56 (01) : 33 - 53
  • [22] Multiplicative semigroups related to the 3x+1 problem
    Caraiani, Ana
    ADVANCES IN APPLIED MATHEMATICS, 2010, 45 (03) : 373 - 389
  • [23] Bounds for the 3x+1 problem using difference inequalities
    Krasikov, I
    Lagarias, JC
    ACTA ARITHMETICA, 2003, 109 (03) : 237 - 258
  • [24] Analyzing percolation of networks inspired by the 3x+1 problem
    Gu, Zhi-Ming
    Zhu, Chen-Ping
    Zhou, Tao
    Zhao, Ming
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (20) : 4986 - 4994
  • [25] An E-Sequence Approach to the 3x+1 Problem
    Wang, Sanmin
    SYMMETRY-BASEL, 2019, 11 (11):
  • [26] On the nonexistence of 2-cycles for the 3x+1 problem
    Simons, JL
    MATHEMATICS OF COMPUTATION, 2005, 74 (251) : 1565 - 1572
  • [27] Real 3x+1
    Misiurewicz, M
    Rodrigues, A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (04) : 1109 - 1118
  • [28] The 3x+1 semigroup
    Applegate, D
    Lagarias, JC
    JOURNAL OF NUMBER THEORY, 2006, 117 (01) : 146 - 159
  • [29] The 3x+1 fractal
    Pe, JL
    COMPUTERS & GRAPHICS-UK, 2004, 28 (03): : 431 - 435
  • [30] 3x+1 minus the
    Monks, KG
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2002, 5 (01): : 47 - 53