LYAPUNOV CHARACTERISTIC EXPONENTS ARE NONNEGATIVE

被引:52
|
作者
PRZYTYCKI, F
机构
关键词
D O I
10.2307/2159858
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that, for an arbitrary rational map f on the Riemann sphere and an arbitrary probability invariant measure on the Julia set, Lyapunov characteristic exponents are nonnegative a.e. In particular log \f'\ is integrable. An analogous theorem is proved for smooth maps of an interval with all critical points being nonflat. This allows us to fill a pp in the proof of Denker and Urbanski's theorem that there exists a probability conformal measure on the Julia set with exponent equal to the supremum of the Hausdorff dimensions of probability invariant measures with positive entropy.
引用
下载
收藏
页码:309 / 317
页数:9
相关论文
共 50 条
  • [41] Flexibility of Lyapunov exponents
    Bochi, J.
    Katok, A.
    Hertz, F. Rodriguez
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2022, 42 (02) : 554 - 591
  • [42] INTEGRABILITY AND LYAPUNOV EXPONENTS
    Hammerlindl, Andy
    JOURNAL OF MODERN DYNAMICS, 2011, 5 (01) : 107 - 122
  • [43] RECURRENCE AND LYAPUNOV EXPONENTS
    Saussol, B.
    Troubetzkoy, S.
    Vaienti, S.
    MOSCOW MATHEMATICAL JOURNAL, 2003, 3 (01) : 189 - 203
  • [44] SECTIONAL LYAPUNOV EXPONENTS
    Arbieto, Alexander
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (09) : 3171 - 3178
  • [45] Quantum Lyapunov exponents
    Falsaperla, P
    Fonte, G
    Salesi, G
    FOUNDATIONS OF PHYSICS, 2002, 32 (02) : 267 - 294
  • [46] THE CURRENT LYAPUNOV EXPONENTS
    VAVRIV, DM
    RYABOV, VB
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1990, (02): : 48 - 50
  • [47] LYAPUNOV EXPONENTS FOR PEDESTRIANS
    EARNSHAW, JC
    HAUGHEY, D
    AMERICAN JOURNAL OF PHYSICS, 1993, 61 (05) : 401 - 407
  • [48] ISENTROPES AND LYAPUNOV EXPONENTS
    Buczolich, Zoltan
    Keszthelyi, Gabriella
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (04) : 1989 - 2009
  • [49] Differentiability of Lyapunov Exponents
    Thiago F. Ferraiol
    Luiz A. B. San Martin
    Journal of Dynamical and Control Systems, 2020, 26 : 289 - 310
  • [50] Quantum Lyapunov Exponents
    P. Falsaperla
    G. Fonte
    G. Salesi
    Foundations of Physics, 2002, 32 : 267 - 294