DETERMINING SHORTEST NETWORKS IN THE EUCLIDEAN PLANE

被引:0
|
作者
WENG, JF [1 ]
机构
[1] UNIV MELBOURNE,DEPT MATH,PARKVILLE,VIC 3052,AUSTRALIA
关键词
D O I
10.1017/S0004972700016427
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:349 / 350
页数:2
相关论文
共 50 条
  • [41] LATTICE MOTIONS OF THE EUCLIDEAN PLANE
    MAKSIMOV, VM
    MATHEMATICS OF THE USSR-SBORNIK, 1980, 37 (02): : 245 - 259
  • [42] ON LATTICE POINTS IN THE EUCLIDEAN PLANE
    NOWAK, WG
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1984, 87 (02): : 209 - 223
  • [43] Involutes of fronts in the Euclidean plane
    Fukunaga, Tomonori
    Takahashi, Masatomo
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2016, 57 (03): : 637 - 653
  • [44] Algebraic models of the Euclidean plane
    Blanc, Jeremy
    Dubouloz, Adrien
    EPIJOURNAL DE GEOMETRIE ALGEBRIQUE, 2018, 2
  • [45] A CHARACTERISTIC PROPERTY OF EUCLIDEAN PLANE
    WU, H
    MICHIGAN MATHEMATICAL JOURNAL, 1969, 16 (02) : 141 - &
  • [46] Topological nearrings on the Euclidean plane
    Magill, KD
    PAPERS ON GENERAL TOPOLOGY AND APPLICATIONS: NINTH SUMMER CONFERENCE AT SLIPPERY ROCK UNIVERSITY, 1995, 767 : 140 - 152
  • [47] Planar nearrings on the Euclidean plane
    Ke W.-F.
    Kiechle H.
    Pilz G.
    Wendt G.
    Journal of Geometry, 2014, 105 (3) : 577 - 599
  • [48] SHORTEST PATHS OF BOUNDED CURVATURE IN THE PLANE
    BOISSONNAT, JD
    CEREZO, A
    LEBLOND, J
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 1994, 11 (1-2) : 5 - 20
  • [49] Shortest Paths in the Plane with Obstacle Violations
    John Hershberger
    Neeraj Kumar
    Subhash Suri
    Algorithmica, 2020, 82 : 1813 - 1832
  • [50] Shortest noncrossing paths in plane graphs
    Takahashi, JY
    Suzuki, H
    Nishizeki, T
    ALGORITHMICA, 1996, 16 (03) : 339 - 357