NON-ISOMORPHIC GROUPS WITH ISOMORPHIC SPECTRAL TABLES AND BURNSIDE MATRICES

被引:0
|
作者
KIMMERLE, W [1 ]
ROGGENKAMP, KW [1 ]
机构
[1] UNIV STUTTGART,INST MATH B,D-70550 STUTTGART,GERMANY
关键词
FINITE GROUP; SPECTRAL TABLE; BURNSIDE MATRIX; ISOMORPHISM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It was shown by Formanek and sibley that the group determinant characterizes a finite group G up to isomorphism. Hoehnke and Johnson (independently the authors - using an argument of Mansfield) showed the corresponding result for k-characters, k = 1, 2, 3. The notion of k-characters dates back to Frobenius. They are determined by the group determinant and may be derived from the character table CT(G) provided one knows additionally the functions PHI(k) : G x ... x G --> C(G), (g1, . . . , g(k)) --> Cg1.....g(k), where C(G) = {C(g), g is-an-element-of G} denotes the set of conjugacy classes of G. The object of the paper is to present criteria for finite groups (more precisely for soluble groups G and H which are both semi-direct products of a similar type) when 1. G and H have isomorphic spectral tables (i.e., they form a Brauer pair), 2. G and H have isomorphic table of marks (in particular the Burnside rings are isomorphic), 3. G and H have the same 2-characters. Using this the authors construct two non-isomorphic soluble groups for which all these three representation-theoretical invariants coincide.
引用
收藏
页码:273 / 282
页数:10
相关论文
共 50 条
  • [41] Counting non-isomorphic chord diagrams
    Cori, R
    Marcus, M
    THEORETICAL COMPUTER SCIENCE, 1998, 204 (1-2) : 55 - 73
  • [42] NUMBER OF NON-ISOMORPHIC STEINER TRIPLES
    ROKOWSKA, B
    COLLOQUIUM MATHEMATICUM, 1973, 27 (01) : 149 - 160
  • [43] Non-isomorphic endomorphisms of Fano threefolds
    Sheng Meng
    De-Qi Zhang
    Guolei Zhong
    Mathematische Annalen, 2022, 383 : 1567 - 1596
  • [44] ENUMERATION OF NON-ISOMORPHIC SEMIGRAPHS IN Γ4
    Kayathri, K.
    Selvam, S. Pethanachi
    ARS COMBINATORIA, 2015, 123 : 247 - 260
  • [45] Construction of non-isomorphic covering arrays
    Torres-Jimenez, Jose
    Izquierdo-Marquez, Idelfonso
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2016, 8 (02)
  • [46] ISOMORPHIC BURNSIDE RINGS
    THEVENAZ, J
    COMMUNICATIONS IN ALGEBRA, 1988, 16 (09) : 1945 - 1947
  • [47] NON-ISOMORPHIC NON-HYPERFINITE FACTORS
    CHING, WM
    CANADIAN JOURNAL OF MATHEMATICS, 1969, 21 (06): : 1293 - &
  • [48] Non-isomorphic endomorphisms of Fano threefolds
    Meng, Sheng
    Zhang, De-Qi
    Zhong, Guolei
    MATHEMATISCHE ANNALEN, 2022, 383 (3-4) : 1567 - 1596
  • [49] NON-ISOMORPHIC NON-HYPERFINITE FACTORS
    CHING, WM
    CANADIAN MATHEMATICAL BULLETIN, 1969, 12 (01): : 122 - &
  • [50] ISOMORPHIC BURNSIDE RINGS
    DEO, S
    VARADARAJAN, K
    JOURNAL OF ALGEBRA, 1991, 139 (02) : 468 - 483