OPTIMAL UNSUPERVISED LEARNING IN A SINGLE-LAYER LINEAR FEEDFORWARD NEURAL NETWORK

被引:956
|
作者
SANGER, TD
机构
关键词
D O I
10.1016/0893-6080(89)90044-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
引用
收藏
页码:459 / 473
页数:15
相关论文
共 50 条
  • [41] ITERATED LEARNING IN A LAYERED FEEDFORWARD NEURAL NETWORK
    MEIR, R
    DOMANY, E
    PHYSICAL REVIEW A, 1988, 37 (07) : 2660 - 2668
  • [42] DISCRIMINABILITY OF SINGLE-LAYER GRAPH NEURAL NETWORKS
    Pfrommer, Samuel
    Ribeiro, Alejandro
    Gama, Fernando
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 8508 - 8512
  • [43] Toward Efficient Palmprint Feature Extraction by Learning a Single-Layer Convolution Network
    Fei, Lunke
    Zhao, Shuping
    Jia, Wei
    Zhang, Bob
    Wen, Jie
    Xu, Yong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (12) : 9783 - 9794
  • [44] A Modified ELM Algorithm for Single-Hidden Layer Feedforward Neural Networks with Linear Nodes
    Man, Zhihong
    Lee, Kevin
    Wang, Dianhui
    Cao, Zhenwei
    Miao, Chunyan
    2011 6TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2011, : 2524 - 2529
  • [45] Linear data projection using a feedforward neural network
    Cleij, P
    Hoogerbrugge, R
    ANALYTICA CHIMICA ACTA, 1997, 348 (1-3) : 495 - 501
  • [46] Single-Layer Neural Net Competes with Multi-layer Neural Net
    Yang, Zheng Rong
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2008, 2008, 5326 : 516 - 524
  • [47] Supervised Versus Unsupervised Binary-Learning by Feedforward Neural Networks
    Nathalie Japkowicz
    Machine Learning, 2001, 42 : 97 - 122
  • [48] Supervised versus unsupervised binary-learning by feedforward neural networks
    Japkowicz, N
    MACHINE LEARNING, 2001, 42 (1-2) : 97 - 122
  • [50] A SINGLE-LAYER SEMI-SUPERVISED FEED FORWARD NEURAL NETWORK CLUSTERING METHOD
    Asadi, Roya
    Kareem, Sameem Abdul
    Asadi, Mitra
    Asadi, Shokoofeh
    MALAYSIAN JOURNAL OF COMPUTER SCIENCE, 2015, 28 (03) : 189 - 212