Asymptotic Test for Dimensionality in Sliced Inverse Regression

被引:0
|
作者
Park, Chongsun [1 ]
Kwak, Jae Guen [1 ]
机构
[1] Sungkyunkwan Univ, Dept Stat, 3-53 Myungryun Dong, Seoul 110745, South Korea
关键词
Sliced inverse regression; Dimension reduction; Latent variable model; Asymptotic test;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
As a promising technique for dimension reduction in regression analysis, Sliced Inverse Regression (SIR) and an associated chi-square test for dimensionality were introduced by Li (1991). However, Li's test needs assumption of Normality for predictors and found to be heavily dependent on the number of slices. We will provide a unified asymptotic test for determining the dimensionality of the SIR model which is based on the probabilistic principal component analysis and free of normality assumption on predictors. Illustrative results with simulated and real examples will also be provided.
引用
收藏
页码:381 / 393
页数:13
相关论文
共 50 条
  • [31] On sliced inverse regression with missing values
    Dong, Yuexiao
    Li, Zeda
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2018, 30 (04) : 990 - 1002
  • [32] A note on shrinkage sliced inverse regression
    Ni, LQ
    Cook, RD
    Tsai, CL
    [J]. BIOMETRIKA, 2005, 92 (01) : 242 - 247
  • [33] Influence functions for sliced inverse regression
    Prendergast, LA
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2005, 32 (03) : 385 - 404
  • [34] Sliced inverse median difference regression
    Stephen Babos
    Andreas Artemiou
    [J]. Statistical Methods & Applications, 2020, 29 : 937 - 954
  • [35] Sliced inverse regression for survival data
    Shevlyakova, Maya
    Morgenthaler, Stephan
    [J]. STATISTICAL PAPERS, 2014, 55 (01) : 209 - 220
  • [36] A robustified version of sliced inverse regression
    Gather, U
    Hilker, T
    Becker, C
    [J]. STATISTICS IN GENETICS AND IN THE ENVIRONMENTAL SCIENCES, 2001, : 147 - 157
  • [37] Online kernel sliced inverse regression
    [J]. Cheng, Haoyang (chyling@mail.ustc.edu.cn), 2025, 203
  • [38] Sliced inverse median difference regression
    Babos, Stephen
    Artemiou, Andreas
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2020, 29 (04): : 937 - 954
  • [39] Bagging Versions of Sliced Inverse Regression
    Kuentz, Vanessa
    Liquet, Benoit
    Saracco, Jerome
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2010, 39 (11) : 1985 - 1996
  • [40] Dimension choice for sliced inverse regression
    Ferre, L
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 323 (04): : 403 - 406