Parameter Determination in a Differential Equation of Fractional Order with Riemann-Liouville Fractional Derivative in a Hilbert Space

被引:0
|
作者
Orlovsky, Dmitry G. [1 ]
机构
[1] Natl Res Nucl Univ MEPhI, Kashirskoye Shosse 31, Moscow 115409, Russia
关键词
equation of fractional order; Hilbert space; self-adjoint operator; Cauchy-type problem; Mittag-Leffler function; inverse problem; characteristic function;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Cauchy type problem for a differential equation with fractional derivative and self-adjoint operator in a Hilbert space is considered. The problem of parameter determination in equation by the value of the solution at a fixed point is presented. Theorems of existence and uniqueness of the solution are proved.
引用
收藏
页码:55 / 63
页数:9
相关论文
共 50 条
  • [1] Fractional Ince equation with a Riemann-Liouville fractional derivative
    Parra-Hinojosa, Alfredo
    Gutierrez-Vega, Julio C.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (22) : 10695 - 10705
  • [2] Fractional Langevin equation and Riemann-Liouville fractional derivative
    Kwok Sau Fa
    [J]. The European Physical Journal E, 2007, 24 : 139 - 143
  • [3] Fractional langevin equation and riemann-liouville fractional derivative
    Fa, Kwok Sau
    [J]. EUROPEAN PHYSICAL JOURNAL E, 2007, 24 (02): : 139 - 143
  • [4] Determination of the parameter of the differential equation of fractional order with the Caputo derivative in Hilbert space
    Orlovsky, D. G.
    [J]. VII INTERNATIONAL CONFERENCE PROBLEMS OF MATHEMATICAL PHYSICS AND MATHEMATICAL MODELLING, 2019, 1205
  • [5] Initialized fractional differential equations with Riemann-Liouville fractional-order derivative
    Du, M. L.
    Wang, Z. H.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2011, 193 (01): : 49 - 60
  • [6] Initialized fractional differential equations with Riemann-Liouville fractional-order derivative
    M.L. Du
    Z.H. Wang
    [J]. The European Physical Journal Special Topics, 2011, 193 : 49 - 60
  • [7] The Riemann-Liouville fractional derivative for Ambartsumian equation
    El-Zahar, E. R.
    Alotaibi, A. M.
    Ebaid, A.
    Aljohani, A. F.
    Gomez Aguilar, J. F.
    [J]. RESULTS IN PHYSICS, 2020, 19
  • [8] The Riemann-Liouville fractional derivative for Ambartsumian equation
    El-Zahar, E. R.
    Alotaibi, A. M.
    Ebaid, A.
    Aljohani, A. F.
    Gomez Aguilar, J. F.
    [J]. RESULTS IN PHYSICS, 2020, 19
  • [9] Stability of fractional order of time nonlinear fractional diffusion equation with Riemann-Liouville derivative
    Le Dinh Long
    Ho Duy Binh
    Kumar, Devendra
    Nguyen Hoang Luc
    Nguyen Huu Can
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (10) : 6194 - 6216
  • [10] On the Solutions Fractional Riccati Differential Equation with Modified Riemann-Liouville Derivative
    Merdan, Mehmet
    [J]. INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 2012