DUALITY FOR MULTIOBJECTIVE FRACTIONAL VARIATIONAL-PROBLEMS

被引:20
|
作者
MISHRA, SK
MUKHERJEE, RN
机构
[1] Department of Applied Mathematics, Institute of Technology, Banaras Hindu University
关键词
D O I
10.1006/jmaa.1994.1328
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A class of multiobjective fractional variational problems is considered and duals are formulated. Under concavity assumptions on the functions involved, duality theorems are proved through a parametric approach to relate efficient solutions of the primal and dual problems. We generalize those results for control problems also. (C) 1994 Academic Press, Inc.
引用
收藏
页码:711 / 725
页数:15
相关论文
共 50 条
  • [21] GENERALIZED INVEXITY AND DUALITY IN MULTIPLE-OBJECTIVE VARIATIONAL-PROBLEMS
    MUKHERJEE, RN
    MISHRA, SK
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 195 (02) : 307 - 322
  • [22] Generalized invexity and duality in multiobjective variational problems involving non-singular fractional derivative
    Dubey, Ved Prakash
    Kumar, Devendra
    Alshehri, Hashim M.
    Singh, Jagdev
    Baleanu, Dumitru
    OPEN PHYSICS, 2022, 20 (01): : 939 - 962
  • [23] Duality for a class of symmetric nondifferentiable multiobjective fractional variational problems with generalized (F, α, ρ, d)-convexity
    Kailey, N.
    Gupta, S. K.
    MATHEMATICAL AND COMPUTER MODELLING, 2013, 57 (5-6) : 1453 - 1465
  • [24] Generalized symmetric duality for multiobjective variational problems with invexity
    Kim, DS
    Lee, WJ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 234 (01) : 147 - 164
  • [25] PREDA-MITITELU DUALITY FOR MULTIOBJECTIVE VARIATIONAL PROBLEMS
    Mititelu, Stefan
    Postolache, Mihai
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2011, 73 (02): : 75 - 84
  • [26] Preda-mititelu duality for multiobjective variational problems
    Mititelu, Ştefan
    Postolache, Mihai
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2011, 73 (02): : 75 - 84
  • [27] A necessary and sufficient condition for duality in multiobjective variational problems
    Arana-Jimenez, M.
    Ruiz-Garzon, G.
    Rufian-Lizana, A.
    Osuna-Gomez, R.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 201 (03) : 672 - 681
  • [28] On Mixed Type Duality for Nondifferentiable Multiobjective Variational Problems
    Husain, I.
    Mattoo, Rumana G.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2010, 3 (01): : 81 - 97
  • [29] Symmetric duality for the multiobjective fractional variational problem with partial invexity
    Chen, XH
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 245 (01) : 105 - 123
  • [30] Multiobjective fractional variational problems with (ρ, b)-quasiinvexity
    Stancu-Minasian, Ioan M.
    Mititelu, Stefan
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2008, 9 (01): : 5 - 11