共 50 条
DELAYED RANDOM-WALKS
被引:80
|作者:
OHIRA, T
[1
]
MILTON, JG
[1
]
机构:
[1] UNIV CHICAGO HOSP,DEPT NEUROL,CHICAGO,IL 60637
来源:
关键词:
D O I:
10.1103/PhysRevE.52.3277
中图分类号:
O35 [流体力学];
O53 [等离子体物理学];
学科分类号:
070204 ;
080103 ;
080704 ;
摘要:
The fluctuations about the stable point in a delayed dynamical system are modeled as a delayed random walk: i.e., a random walk in which the transition probability depends on the position of the walker at a time tau in the past and transitions in the direction of the stable point are more probable. It is shown that, depending on the magnitude of the delay, the root mean square displacement root[X(2)(t)] versus time interval approaches a limiting value in either an oscillatory or nonoscillatory fashion. This limiting value of root[X(2)(t)] is a linear function of tau.
引用
收藏
页码:3277 / 3280
页数:4
相关论文