OPTIMALLY REGULARIZED INVERSE OF SINGULAR VALUE DECOMPOSITION AND APPLICATION TO SIGNAL EXTRAPOLATION

被引:20
|
作者
SANO, A
机构
[1] Department of Electrical Engineering, Keio University, Kohoku-ku, Yokohama, 223
关键词
EXTRAPOLATION; DECONVOLUTION; SINGULAR VALUE DECOMPOSITION; REGULARIZATION; RIDGE REGRESSION;
D O I
10.1016/0165-1684(93)90145-Z
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The singular value decomposition (SVD) is an excellent tool to attain reliable and stable least squares parameters estimation in ill-conditioned cases, by discarding small singular values adequately. However, large singular values and small singular values do not always separate neatly. In the present paper, we introduce multiple regularization parameters to modify the Moore-Penrose pseudo-inverse matrix for the purpose of stabilization of ill-posed least squares problems. Optimal values of the regularization parameters can be determined so-as to minimize an estimated mean squares error (EMSE) criterion calculated by using only accessible signal data. Thus, the proposed scheme can sucessfully give threshold conditions whether smaller singular values should be adopted or discarded. The relationship with the optimal truncation of the singular values is also investigated analytically. Effectiveness of the proposed method is discussed in applications to optimal extrapolation of band-limited signals.
引用
收藏
页码:163 / 176
页数:14
相关论文
共 50 条
  • [21] Inverse analysis by boundary element method with singular value decomposition
    Enokizono, Masato
    Kato, Eiji
    Tsuchida, Yuji
    IEEE Transactions on Magnetics, 1996, 32 (3 /1): : 1322 - 1325
  • [22] The Moore–Penrose Inverse and Singular Value Decomposition of Split Quaternions
    Rafał Abłamowicz
    Advances in Applied Clifford Algebras, 2020, 30
  • [23] Inverse analysis by boundary element method with singular value decomposition
    Enokizono, M
    Kato, E
    Tsuchida, Y
    IEEE TRANSACTIONS ON MAGNETICS, 1996, 32 (03) : 1322 - 1325
  • [24] Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition
    ten Berge, Jos M. F.
    PSYCHOMETRIKA, 2012, 77 (03) : 613 - 614
  • [25] A Novel Sparse Graph-Regularized Singular Value Decomposition Model and Its Application to Genomic Data Analysis
    Min, Wenwen
    Wan, Xiang
    Chang, Tsung-Hui
    Zhang, Shihua
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (08) : 3842 - 3856
  • [26] Signal and traveltime parameter estimation using singular value decomposition
    1600, Society of Exploration Geophysicists (79):
  • [27] Lidar signal de-noising by Singular Value Decomposition
    Wang Huanxue
    Liu Jianguo
    Zhang Tianshu
    INTERNATIONAL SYMPOSIUM ON OPTOELECTRONIC TECHNOLOGY AND APPLICATION 2014: OPTICAL REMOTE SENSING TECHNOLOGY AND APPLICATIONS, 2014, 9299
  • [28] Local singular value decomposition for signal enhancement of seismic data
    Bekara, Maiza
    van der Baan, Mirko
    GEOPHYSICS, 2007, 72 (02) : V59 - V65
  • [29] A regularized directional derivative-based Newton method for inverse singular value problems
    Ma, Wei
    Bai, Zheng-Jian
    INVERSE PROBLEMS, 2012, 28 (12)
  • [30] Signal and traveltime parameter estimation using singular value decomposition
    Ursin, Bjorn
    Silva, Michelangelo G.
    Porsani, Milton J.
    GEOPHYSICS, 2014, 79 (05) : U1 - U14