GROUPS WITH NILPOTENT COMMUTATOR SUBGROUP

被引:0
|
作者
SHULT, EE
机构
来源
AMERICAN MATHEMATICAL MONTHLY | 1964年 / 71卷 / 08期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:952 / &
相关论文
共 50 条
  • [31] Finitely Generated Nilpotent Groups of Infinite Cyclic Commutator Subgroups
    Jun LIAO
    He Guo LIU
    Xing Zhong XU
    Ji Ping ZHANG
    [J]. Acta Mathematica Sinica, 2020, 36 (12) : 1315 - 1340
  • [32] Finitely Generated Nilpotent Groups of Infinite Cyclic Commutator Subgroups
    Jun Liao
    He Guo Liu
    Xing Zhong Xu
    Ji Ping Zhang
    [J]. Acta Mathematica Sinica, English Series, 2020, 36 : 1315 - 1340
  • [33] Finitely Generated Nilpotent Groups of Infinite Cyclic Commutator Subgroups
    Jun LIAO
    He Guo LIU
    Xing Zhong XU
    Ji Ping ZHANG
    [J]. Acta Mathematica Sinica,English Series, 2020, (12) : 1315 - 1340
  • [34] Finitely Generated Nilpotent Groups of Infinite Cyclic Commutator Subgroups
    Liao, Jun
    Liu, He Guo
    Xu, Xing Zhong
    Zhang, Ji Ping
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2020, 36 (12) : 1315 - 1340
  • [35] The poset of the nilpotent commutator of a nilpotent matrix
    Khatami, Leila
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (12) : 3763 - 3776
  • [36] On finite alperin p-groups with homocyclic commutator subgroup
    Veretennikov, B. M.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2012, 279 : S139 - S151
  • [38] On finite Alperin p-groups with homocyclic commutator subgroup
    Veretennikov, B. M.
    [J]. TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2011, 17 (04): : 53 - 65
  • [39] INVARIANTS OF FINITE p-GROUPS WITH A MINIMAL COMMUTATOR SUBGROUP
    Keranova, Neli T.
    Nachev, Nako A.
    [J]. COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2015, 68 (01): : 5 - 10
  • [40] Finitep-groups with cyclic commutator subgroup and cyclic center
    A. A. Finogenov
    [J]. Mathematical Notes, 1998, 63 : 802 - 812