Random walk polynomials and random walk measures play a prominent role in the analysis of a class of Markov chains called random walks. Without any reference to random walks, however, a random walk Polynomial sequence can be defined (and will be defined in this paper) as a polynomial sequence {P(n)(x)) which is orthogonal with respect to a measure on [- 1, 1] and which is such that the parameters alpha(n) in the recurrence relations P(n+1)(x)=(x - alpha(n))P(n)(x) - beta(n)P(n-1)(x) are nonnegative. Any measure with respect to which a random walk polynomial sequence is orthogonal is a random walk measure. We collect some properties of random walk measures and polynomials, and use these findings to obtain a limit theorem for random walk measures which is of interest in the study of random walks. We conclude with a conjecture on random walk measures involving Christoffel functions.
机构:
Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA
Univ So Calif, Ctr Appl Math Sci, Los Angeles, CA 90089 USAUniv So Calif, Dept Chem, Los Angeles, CA 90089 USA
Mak, Chi H.
Phuong Pham
论文数: 0引用数: 0
h-index: 0
机构:
Univ So Calif, Dept Biol Sci, Los Angeles, CA 90089 USAUniv So Calif, Dept Chem, Los Angeles, CA 90089 USA
Phuong Pham
Afif, Samir A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ So Calif, Dept Biol Sci, Los Angeles, CA 90089 USAUniv So Calif, Dept Chem, Los Angeles, CA 90089 USA
Afif, Samir A.
Goodman, Myron F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA
Univ So Calif, Dept Biol Sci, Los Angeles, CA 90089 USAUniv So Calif, Dept Chem, Los Angeles, CA 90089 USA