EXTENSIONS TO THE STRATEGY OF THE STEEPEST ASCENT FOR RESPONSE SURFACE METHODOLOGY

被引:0
|
作者
Kiani, Mehdi [1 ,2 ]
Panaretos, John [1 ]
Psarakis, Stelios [1 ]
机构
[1] Athens Univ Econ & Business, Dept Stat, 76 Patision St, Athens 10434, Greece
[2] Payame Noor Univ, Tehran, Iran
关键词
regression; first-order model; optimum response;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, the development of steepest ascent strategy in response surface methodology is considered. Some major aspects are the consideration of the path of steepest ascent under condition of some constraint in direction of improvement, the confidence region for the direction of steepest ascent, and the confidence cone about the estimated path.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [21] A SIMPLIFIED STEEPEST-ASCENT METHOD
    OKAMURA, K
    JOURNAL OF APPLIED MECHANICS, 1966, 33 (02): : 452 - &
  • [22] A STEEPEST ASCENT METHOD FOR CHEBYSHEV PROBLEM
    MEICLER, M
    MATHEMATICS OF COMPUTATION, 1969, 23 (108) : 813 - &
  • [23] ITERATED STEEPEST ASCENT ON ELLIPSOIDAL CONTOURS
    BEUHLER, RJ
    SHAH, BV
    KEMPTHORNE, O
    ANNALS OF MATHEMATICAL STATISTICS, 1961, 32 (02): : 622 - 623
  • [24] GENERALIZED APPROACH TO METHOD OF STEEPEST ASCENT
    ELDOR, H
    KOPPEL, LB
    OPERATIONS RESEARCH, 1971, 19 (07) : 1613 - &
  • [25] Ridge Detection with the Steepest Ascent Method
    Koka, Shinji
    Anada, Koichi
    Nomaki, Kenshi
    Sugita, Kimio
    Tsuchida, Kensei
    Yaku, Takeo
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE (ICCS), 2011, 4 : 216 - 221
  • [26] STEEPEST ASCENT PARTAN ON ELLIPSOIDAL CONTOURS
    BUEHLER, RJ
    SHAH, BV
    KEMPTHORNE, O
    ANNALS OF MATHEMATICAL STATISTICS, 1961, 32 (02): : 623 - 623
  • [27] A method of steepest ascent for multiresponse surface optimization using a desirability function method
    Lee, Dong-Hee
    Kim, So-Hee
    Byun, Jai-Hyun
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2020, 36 (06) : 1931 - 1948
  • [28] The fourth law of thermodynamics: steepest entropy ascent
    Beretta, Gian Paolo
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 378 (2170):
  • [29] Methodology of an application of the steepest-entropy-ascent quantum thermodynamic framework to physical phenomena in materials science
    Yamada, Ryo
    von Spakovsky, Michael R.
    Reynolds, William T., Jr.
    COMPUTATIONAL MATERIALS SCIENCE, 2019, 166 : 251 - 264
  • [30] APPLICATION OF THE STEEPEST ASCENT METHOD TO CONVEX PROGRAMMING
    PIETRZYKOWSKI, T
    COMMUNICATIONS OF THE ACM, 1962, 5 (06) : 315 - 315