CLASSICAL AND QUANTUM SYMMETRIES REDUCTION AND INTEGRABILITY

被引:2
|
作者
Marmo, Giuseppe [1 ]
Sparano, Giovanni [2 ]
Vilasi, Gaetano [3 ]
机构
[1] Univ Napoli, Ist Nazl Fis Nucl, Dipartimento Sci Fis, I-80126 Naples, Italy
[2] Univ Salerno, Ist Nazl Fis Nucl, Dipartimento Matemat, I-84084 Fisciano, Italy
[3] Univ Salerno, Ist Nazl Fis Nucl, Dipartimento Fis, I-84084 Fisciano, Italy
关键词
D O I
10.7546/jgsp-31-2013-105-117
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Completely integrable systems always admit more alternative Hamiltonian descriptions. The geometrical formulation of quantum systems shows that similar conclusions hold true also for quantum systems. In addition, the description of quantum systems on Hilbert manifolds, e.g., the complex projective space, shows that not only quantum systems admit alternative Hamiltonian descriptions, they also admit alternative linear descriptions.
引用
收藏
页码:105 / 117
页数:13
相关论文
共 50 条
  • [31] Classical symmetries and the Quantum Approximate Optimization Algorithm
    Ruslan Shaydulin
    Stuart Hadfield
    Tad Hogg
    Ilya Safro
    Quantum Information Processing, 2021, 20
  • [32] Hidden symmetries of dynamics in classical and quantum physics
    Cariglia, Marco
    REVIEWS OF MODERN PHYSICS, 2014, 86 (04) : 1283 - 1333
  • [33] λ-Symmetries and integrability by quadratures
    Muriel, C.
    Romero, J. L.
    Ruiz, A.
    IMA JOURNAL OF APPLIED MATHEMATICS, 2017, 82 (05) : 1061 - 1087
  • [34] λ-Symmetries and integrability by quadratures
    Muriel, C.
    Romero, J.L.
    Ruiz, A.
    IMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications), 2017, 82 (05): : 1061 - 1087
  • [35] Classical and quantum integrability of Hamiltonians without scattering states
    Enciso, A.
    Peralta-Salas, D.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2006, 148 (02) : 1086 - 1099
  • [36] Is the efficiency of classical simulations of quantum dynamics related to integrability?
    Prosen, Tomaz
    Znidaric, Marko
    PHYSICAL REVIEW E, 2007, 75 (01):
  • [37] Classical and quantum Liouville integrability of nonlinear Heisenberg equations
    Perinova, V.
    Luks, A.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E744 - E762
  • [38] Quantum algorithmic integrability: The metaphor of classical polygonal billiards
    Mantica, G
    PHYSICAL REVIEW E, 2000, 61 (06): : 6434 - 6443
  • [39] Classical and quantum integrability for a class of potentials in two dimensions
    Hiranwal, R
    Mishra, SC
    Mishra, V
    ANNALS OF PHYSICS, 2004, 309 (02) : 390 - 420
  • [40] Classical and quantum integrability in 3D systems
    Gadella, M.
    Negro, J.
    Pronko, G. P.
    Santander, M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (30)