ON DESTABILIZING IMPLICIT FACTORS IN DISCRETE ADVECTION-DIFFUSION EQUATIONS

被引:4
|
作者
BECKERS, JM
机构
[1] GHER, Mécanique des Fluides Géophysiques, University of Liège, B-4000 Liège
关键词
D O I
10.1006/jcph.1994.1061
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In the present paper, we find necessary and sufficient stability conditions for a simple one-time step finite difference discretization of an N-dimensional advection-diffusion equation. Furthermore, it is shown that when the implicit factors differ in each direction, a strange behavior occurs: By increasing one implicit factor in only one direction, a stable scheme can become unstable. It is thus suggested to use a single implicit direction (for efficient computing), or the same implicit factor in each direction. (C) 1994 Academic Press, Inc.
引用
下载
收藏
页码:260 / 265
页数:6
相关论文
共 50 条
  • [21] Biological modeling with nonlocal advection-diffusion equations
    Painter, Kevin J.
    Hillen, Thomas
    Potts, Jonathan R.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2024, 34 (01): : 57 - 107
  • [22] Moments for Tempered Fractional Advection-Diffusion Equations
    Zhang, Yong
    JOURNAL OF STATISTICAL PHYSICS, 2010, 139 (05) : 915 - 939
  • [23] A Comparison of Closures for Stochastic Advection-Diffusion Equations
    Jarman, K. D.
    Tartakovsky, A. M.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2013, 1 (01): : 319 - 347
  • [24] Some Stability Results for Advection-Diffusion Equations
    Howes, F.A.
    Studies in Applied Mathematics, 1986, 74 (01): : 35 - 53
  • [25] On relaxation systems and their relation to discrete velocity Boltzmann models for scalar advection-diffusion equations
    Simonis, Stephan
    Frank, Martin
    Krause, Mathias J.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 378 (2175):
  • [26] Discrete Particle Distribution Model for Advection-Diffusion Transport
    Dian-Chang, Wang
    Xing-Kui, Wang
    Ming-Zhong, Yu
    Dan-Xun, Li
    Costa, Manuel
    Ferreira, João S.
    Journal of Hydraulic Engineering, 2001, 127 (11) : 980 - 981
  • [27] Discrete particle distribution model for advection-diffusion transport
    Wang, DC
    Wang, XK
    Yu, MZ
    Li, DX
    JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 2001, 127 (11): : 980 - 980
  • [28] Interpolating discrete advection-diffusion propagators at Leja sequences
    Caliari, M
    Vianello, M
    Bergamaschi, L
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 172 (01) : 79 - 99
  • [29] Discrete particle distribution model for advection-diffusion transport
    Costa, M
    Ferreira, JS
    JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 2000, 126 (07): : 525 - 532
  • [30] Traveling wave solutions of advection-diffusion equations with nonlinear diffusion
    Monsaingeon, L.
    Novikov, A.
    Roquejoffre, J. -M.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (04): : 705 - 735