ON DESTABILIZING IMPLICIT FACTORS IN DISCRETE ADVECTION-DIFFUSION EQUATIONS

被引:4
|
作者
BECKERS, JM
机构
[1] GHER, Mécanique des Fluides Géophysiques, University of Liège, B-4000 Liège
关键词
D O I
10.1006/jcph.1994.1061
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In the present paper, we find necessary and sufficient stability conditions for a simple one-time step finite difference discretization of an N-dimensional advection-diffusion equation. Furthermore, it is shown that when the implicit factors differ in each direction, a strange behavior occurs: By increasing one implicit factor in only one direction, a stable scheme can become unstable. It is thus suggested to use a single implicit direction (for efficient computing), or the same implicit factor in each direction. (C) 1994 Academic Press, Inc.
引用
收藏
页码:260 / 265
页数:6
相关论文
共 50 条
  • [1] Discrete advection-diffusion equations on graphs: Maximum principle and finite volumes
    Hosek, Radim
    Volek, Jonas
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 361 : 630 - 644
  • [2] Nonlocal Nonlinear Advection-Diffusion Equations
    Constantin, Peter
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2017, 38 (01) : 281 - 292
  • [3] Nonlocal nonlinear advection-diffusion equations
    Peter Constantin
    [J]. Chinese Annals of Mathematics, Series B, 2017, 38 : 281 - 292
  • [4] Accurate discretization of advection-diffusion equations
    Grima, R.
    Newman, T.J.
    [J]. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 70 (3 2): : 036703 - 1
  • [5] ADVECTION-DIFFUSION EQUATIONS WITH DENSITY CONSTRAINTS
    Meszaros, Alpar Richard
    Santambrogio, Filippo
    [J]. ANALYSIS & PDE, 2016, 9 (03): : 615 - 644
  • [6] Accurate discretization of advection-diffusion equations
    Grima, R
    Newman, TJ
    [J]. PHYSICAL REVIEW E, 2004, 70 (03):
  • [7] Nonlocal Nonlinear Advection-Diffusion Equations
    Peter CONSTANTIN
    [J]. Chinese Annals of Mathematics,Series B, 2017, (01) : 281 - 292
  • [8] Numeric solution of advection-diffusion equations by a discrete time random walk scheme
    Angstmann, Christopher N.
    Henry, Bruce, I
    Jacobs, Byron A.
    McGann, Anna, V
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2020, 36 (03) : 680 - 704
  • [9] IMPLICIT RADIAL POINT INTERPOLATION METHOD FOR NONLINEAR SPACE FRACTIONAL ADVECTION-DIFFUSION EQUATIONS
    Qin, Xinqiang
    Peng, Dayao
    Hu, Gang
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (06) : 2199 - 2212
  • [10] An implicit wavelet collocation method for variable coefficients space fractional advection-diffusion equations
    Liu, Can
    Yu, Zhe
    Zhang, Xinming
    Wu, Boying
    [J]. APPLIED NUMERICAL MATHEMATICS, 2022, 177 : 93 - 110