A Note on the Adaptive LASSO for Zero-Inflated Poisson Regression

被引:10
|
作者
Banerjee, Prithish [1 ]
Garai, Broti [2 ]
Mallick, Himel [3 ,4 ]
Chowdhury, Shrabanti [5 ]
Chatterjee, Saptarshi [6 ]
机构
[1] JP Morgan Chase & Co, New York, NY USA
[2] NBCUniversal, New York, NY USA
[3] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[4] Broad Inst MIT & Harvard, Program Med & Populat Genet, Cambridge, MA 02142 USA
[5] Icahn Sch Med Mt Sinai, Dept Genet & Genom Sci, New York, NY 10029 USA
[6] Eli Lilly & Co, Indianapolis, IN 46285 USA
关键词
D O I
10.1155/2018/2834183
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of modelling count data with excess zeros using Zero-Inflated Poisson (ZIP) regression. Recently, various regularization methods have been developed for variable selection in ZIP models. Among these, EM LASSO is a popular method for simultaneous variable selection and parameter estimation. However, EM LASSO suffers from estimation inefficiency and selection inconsistency. To remedy these problems, we propose a set of EM adaptive LASSO methods using a variety of data-adaptive weights. We show theoretically that the new methods are able to identify the true model consistently, and the resulting estimators can be as efficient as oracle. The methods are further evaluated through extensive synthetic experiments and applied to a German health care demand dataset.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Identifiability of zero-inflated Poisson models
    Li, Chin-Shang
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2012, 26 (03) : 306 - 312
  • [42] Semiparametric estimation of a zero-inflated Poisson regression model with missing covariates
    T. Martin Lukusa
    Shen-Ming Lee
    Chin-Shang Li
    [J]. Metrika, 2016, 79 : 457 - 483
  • [43] Testing the Lack-of-Fit of Zero-Inflated Poisson Regression Models
    Li, Chin-Shang
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2011, 40 (04) : 497 - 510
  • [44] Bootstrap tests for overdispersion in a zero-inflated Poisson regression model -: Reply
    Ridout, M
    Hinde, JP
    Demétrio, CGB
    [J]. BIOMETRICS, 2005, 61 (02) : 628 - 629
  • [45] A note on the weighting-type estimations of the zero-inflated Poisson regression model with missing data in covariates
    Lukusa, Martin T.
    Phoa, Frederick Kin Hing
    [J]. STATISTICS & PROBABILITY LETTERS, 2020, 158
  • [46] Bivariate zero-inflated generalized Poisson regression model with flexible covariance
    Faroughi, Pouya
    Ismail, Noriszura
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (15) : 7769 - 7785
  • [47] Score tests for zero-inflated generalized Poisson mixed regression models
    Xie, Feng-Chang
    Wei, Bo-Cheng
    Lin, Jin-Guan
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (09) : 3478 - 3489
  • [48] A bivariate zero-inflated Poisson regression model to analyze occupational injuries
    Wang, K
    Lee, AH
    Yau, KKW
    Carrivick, PJW
    [J]. ACCIDENT ANALYSIS AND PREVENTION, 2003, 35 (04): : 625 - 629
  • [49] A novel approach for zero-inflated count regression model: Zero-inflated Poisson generalized-Lindley linear model with applications
    Altun, Emrah
    Alqifari, Hana
    Eliwa, Mohamed S.
    [J]. AIMS MATHEMATICS, 2023, 8 (10): : 23272 - 23290
  • [50] COMPARING POISSON REGRESSION VIA NEGATIVE BINOMIAL REGRESSION FOR MODELING ZERO-INFLATED DATA
    Neamah, Mandi Wahhab
    Albasril, Enas Abid Alhafidh Mohamed
    Raheem, Saif Hosam
    [J]. INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2021, 17 (01): : 365 - 373