Segmentation of bone in CT images using global adaptive thresholding

被引:1
|
作者
Rainier Ortega, Dolgis [1 ]
Gutierrez, Guivey [1 ]
Miguel Iznaga, Arsenio [1 ]
Rodriguez, Tania [1 ]
de Beule, Matthieu [2 ]
Verhegghe, Benedict [2 ]
机构
[1] Inst Super Politecn Jose Antonio Echeverria, Fac Ingn Mecan, Havana, Cuba
[2] Univ Ghent, Fac Ingn, Inst Tecnol Biomed, Gante, Belgium
来源
IMAGEN DIAGNOSTICA | 2014年 / 5卷 / 02期
关键词
Global threshold; Adaptive threshold; Medical image processing; Bone 3D reconstruction; CT image; Geometrical model; Decomposition;
D O I
10.1016/j.imadi.2014.03.001
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Bone is the main element of the skeleton. It support soft tissues, protects vital organs and constitutes a lever system that amplifies forces generated during muscular contraction. A description is presented of the mechanical behavior of hard tissues by means of discrete models going through various stages of analysis, which range from digital image processing until the specification of physical properties of tissue to the discrete model. The decomposition of these models into their constituent parts being a key element. In this paper, we discuss a method for the geometric description of bones from a sequence of computed tomography images, combining global and adaptive thresholding to determine the geometric domain of bones in each slice. Results: obtained showed that this method constitutes an effective proposal for the problemof partial volume and separation of bones on joints. (C) 2013 ACTEDI. Published by Elsevier Espana, S.L.U. All rights reserved.
引用
收藏
页码:68 / 73
页数:6
相关论文
共 50 条
  • [21] Exudates segmentation using inverse surface adaptive thresholding
    Yazid, Haniza
    Arof, Hamzah
    Isa, Hazlita Mohd
    MEASUREMENT, 2012, 45 (06) : 1599 - 1608
  • [22] Global adaptive histogram feature network for automatic segmentation of infection regions in CT images
    Min, Xinren
    Liu, Yang
    Zhou, Shengjing
    Huang, Huihua
    Zhang, Li
    Gong, Xiaojun
    Yang, Dongshan
    Wang, Menghao
    Yang, Rui
    Zhong, Mingyang
    MULTIMEDIA SYSTEMS, 2024, 30 (04)
  • [23] Obtaining foot bone structure applying global and adaptive thresholding
    Ortega, D. R.
    Gutierrez, G.
    Iznaga, A. M.
    Rodriguez, T.
    de Beule, M.
    Verhegghe, B.
    REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2015, 31 (02): : 113 - 119
  • [24] A Variational Approach to Bone Segmentation in CT Images
    Calder, Jeff
    Tahmasebi, Amir M.
    Mansouri, Abdol-Reza
    MEDICAL IMAGING 2011: IMAGE PROCESSING, 2011, 7962
  • [25] BONE TUMOR SEGMENTATION FROM CT IMAGES
    Catal Reis, Hatice
    Bayram, Bulent
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2016, 7 (02): : 173 - 180
  • [26] INTELLIGENT SEGMENTATION OF FRUIT IMAGES USING AN INTEGRATED THRESHOLDING AND ADAPTIVE K-MEANS METHOD (TSNKM)
    Hambali, Hamirul'Aini
    Abdullah, Sharifah Lailee Syed
    Jamil, Nursuriati
    Harun, Hazaruddin
    JURNAL TEKNOLOGI, 2016, 78 (6-5): : 13 - 20
  • [27] Unified wavelet and gaussian filtering for segmentation of CT images; application in segmentation of bone in pelvic CT images
    Simina Vasilache
    Kevin Ward
    Charles Cockrell
    Jonathan Ha
    Kayvan Najarian
    BMC Medical Informatics and Decision Making, 9
  • [28] Cooperative Swarm Intelligence Algorithms for Adaptive Multilevel Thresholding Segmentation of COVID-19 CT-Scan Images
    Sabha, Muath
    Thaher, Thaer
    Emam, Marwa M.
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2023, 29 (07) : 759 - 804
  • [29] Unified wavelet and gaussian filtering for segmentation of CT images; application in segmentation of bone in pelvic CT images
    Vasilache, Simina
    Ward, Kevin
    Cockrell, Charles
    Ha, Jonathan
    Najarian, Kayvan
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2009, 9
  • [30] Deep learning aided oropharyngeal cancer segmentation with adaptive thresholding for predicted tumor probability in FDG PET and CT images
    De Biase, Alessia
    Sijtsema, Nanna M.
    van Dijk, Lisanne, V
    Langendijk, Johannes A.
    van Ooijen, Peter M. A.
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (05):