ON SIGNED ARC TOTAL DOMINATION IN DIGRAPHS

被引:0
|
作者
Asgharsharghi, Leila [1 ]
Khodkar, Abdollah [2 ]
Sheikholeslami, S. M. [1 ]
机构
[1] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[2] Univ West Georgia, Dept Math, Carrollton, GA 30118 USA
关键词
signed arc total dominating function; signed arc total domination number; domination in digraphs;
D O I
10.7494/OpMath.2018.38.6.779
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let D = (V, A) be a finite simple digraph and N(uv) = {u'v' not equal uv vertical bar u = u' or v = v'} be the open neighbourhood of uv in D. A function f : A -> {-1, +1} is said to be a signed arc total dominating function (SATDF) of D if Sigma(e'is an element of N(uv)) f(e') >= 1 holds for every arc uv is an element of A. The signed arc total domination number gamma(st)'(D) is defined as gamma(st)'(D) = min{Sigma(e is an element of A) f(e) vertical bar f is an SATDF of D}. In this paper we initiate the study of the signed arc total domination in digraphs and present some lower bounds for this parameter.
引用
收藏
页码:779 / 794
页数:16
相关论文
共 50 条
  • [21] Sharp lower bounds on signed domination numbers of digraphs
    Meng, Wei
    Wang, Ruixia
    ARS COMBINATORIA, 2015, 121 : 281 - 289
  • [22] Signed Total Domination in Graphs
    邢化明
    孙良
    陈学刚
    Journal of Beijing Institute of Technology(English Edition), 2003, (03) : 319 - 321
  • [23] Signed total domination in graphs
    Henning, MA
    DISCRETE MATHEMATICS, 2004, 278 (1-3) : 109 - 125
  • [24] RESTRICTED DOMINATION IN ARC-COLORED DIGRAPHS
    Delgado-Escalante, P.
    Galeana-Sanchez, H.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2014, 11 (01) : 95 - 104
  • [25] ALTERNATING DOMINATION IN ARC-COLORED DIGRAPHS
    Delgado-Escalante, P.
    Galeana-Sanchez, H.
    ARS COMBINATORIA, 2009, 90 : 275 - 288
  • [26] The Signed Total Domination Number of Graphs
    Gao, Mingjing
    Shan, Erfang
    ARS COMBINATORIA, 2011, 98 : 15 - 24
  • [27] Signed total Italian domination in graphs
    Volkmann, Lutz
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2020, 115 : 291 - 305
  • [28] Signed total domination number of a graph
    Zelinka, B
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2001, 51 (02) : 225 - 229
  • [29] On signed majority total domination in graphs
    Xing, HM
    Sun, L
    Chen, XG
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2005, 55 (02) : 341 - 348
  • [30] Signed Total Domination Nnumber of a Graph
    Bohdan Zelinka
    Czechoslovak Mathematical Journal, 2001, 51 : 225 - 229