A Numerical Method For Approximating The Time Constant Of A Measuring Circuit When Differentiating The Newton Interpolation Polynomial

被引:0
|
作者
Mastepanenko, Maxim Alekseevich [1 ]
Gabriyelyan, Georgy Shalikoyevich [1 ]
Gulay, Tatiana Aleksandrovna [1 ]
Zhukova, Viktoriya Artemovna [1 ]
Litvin, Dmitry Borisovich [1 ]
机构
[1] Stavropol State Agrarian Univ, Zootekhnicheskiy Lane 12, Stavropol 355017, Russia
关键词
time constant; numerical methods; accuracy; field of efficiency;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Determination of the time constant of the measuring circuit is the main metrological task when measuring the electric capacitance at a constant current. It has been established that the most promising direction for increasing the accuracy of processing systems for measuring signals of capacitive sensors is the use of instantaneous stress values during the developing transition process. We have proposed two new algorithms for estimating the time constant, based on the approximation of derivatives using finite differences in numerical differentiation algorithms. The proposed algorithms allowed to reduce the measurement error of the electrical capacity to 0.055%.
引用
收藏
页码:649 / 653
页数:5
相关论文
共 50 条
  • [1] NUMERICAL-SOLUTION OF MATRIX POLYNOMIAL EQUATIONS BY NEWTON METHOD
    KRATZ, W
    STICKEL, E
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1987, 7 (03) : 355 - 369
  • [2] NUMERICAL-METHODS UNDER INTERPOLATION WITH RESTRICTIONS AND THEIR CONVERGENCE METHOD OF NEWTON
    ILIEV, GL
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1987, 40 (05): : 37 - 40
  • [3] NUMERICAL-METHOD OF DETERMINATION OF CIRCUIT FUNCTIONS POLYNOMIAL COEFFICIENTS
    ANISIMOV, VI
    EZHOV, SN
    SKOBELTSYN, KB
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 1980, 23 (06): : 26 - 29
  • [4] Numerical integration by using polynomial P5(x) of Newton-Gregory forward interpolation formula
    Jamil, Oras B.
    Tanak, Khader S.
    Abdulrazzaq, Zaid Abdulaziz
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, (48): : 650 - 658
  • [5] Numerical integration by using polynomial P5(x) of Newton-Gregory forward interpolation formula
    Jamil, Oras B.
    Tanak, Khader S.
    Abdulrazzaq, Zaid Abdulaziz
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, (48): : 650 - 658
  • [6] Numerical integration by using polynomial P5(x) of Newton-Gregory forward interpolation formula
    Jamil, Oras B.
    Tanak, Khader S.
    Abdulrazzaq, Zaid Abdulaziz
    Italian Journal of Pure and Applied Mathematics, 2022, 48 : 650 - 658
  • [7] Estimation of horizontal multilayer soil parameters using Newton interpolation polynomial and h-DETLBO method
    Sengar, Kaushal Pratap
    Chandrasekaran, Kandasamy
    ELECTRICAL ENGINEERING, 2020, 102 (04) : 2083 - 2094
  • [8] Estimation of horizontal multilayer soil parameters using Newton interpolation polynomial and h-DETLBO method
    Kaushal Pratap Sengar
    Kandasamy Chandrasekaran
    Electrical Engineering, 2020, 102 : 2083 - 2094
  • [9] Highly sensitive method for measuring time constant of fluorescence
    Huang, Songjun
    Liu, Lie
    Chao, Hui
    Yingyong Jiguang/Applied Laser Technology, 1993, 13 (04): : 169 - 170
  • [10] RETRACTED: New numerical method for ordinary differential equations: Newton polynomial (Retracted Article)
    Atangana, Abdon
    Araz, Seda Igret
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 372