On Similarity Homogeneous Locally Compact Spaces with Intrinsic Metric

被引:0
|
作者
Gundyrev, I. A. [1 ]
机构
[1] Omsk State Univ FM Dostoyevskii, Prosp Mira 55a, Omsk 644077, Russia
关键词
similarity homogeneous space; intrinsic metric; submetry; space of curvature bounded below in the sense of A. D. Aleksandrov; homogeneous space; delta-homogeneous space;
D O I
10.3103/S1066369X0804004X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we generalize partially the theorem of V. N. Berestovskii on characterization of similarity homogeneous (nonhomogeneous) Riemannian manifolds, i.e., Riemannian manifolds admitting transitive group of metric similarities other than motions to the case of locally compact similarity homogeneous (nonhomogeneous) spaces with intrinsic metric satisfying the additional assumption that the canonically conformally equivalent homogeneous space is delta-homogeneous or a space of curvature bounded below in the sense of A. D. Aleksandrov. Under the same assumptions, we prove the conjecture of V. N. Berestovskii on topological structure of such spaces.
引用
收藏
页码:24 / 37
页数:14
相关论文
共 50 条